Transcriptomic analysis of rice in response to iron deficiency and excess
详细信息    查看全文
  • 作者:Khurram Bashir (1) (2)
    Kousuke Hanada (3) (4)
    Minami Shimizu (4)
    Motoaki Seki (2) (5)
    Hiromi Nakanishi (1)
    Naoko K Nishizawa (1) (6)

    1. Laboratory of Plant Biotechnology
    ; Department of Global Agricultural Sciences ; Graduate School of Agricultural and Life Sciences ; The University of Tokyo ; 1-1-1 Yayoi ; Bunkyo-ku ; Tokyo ; 113-8657 ; Japan
    2. Plant Genomics Network Research Team
    ; Center for Sustainable Resource Science ; RIKEN Yokohama Campus ; 1-7-22 Suehiro-cho ; Tsurumi-ku ; Yokohama City ; Kanagawa ; 230-0045 ; Japan
    3. Gene Discovery Research Group
    ; Center for Sustainable Resource Science ; RIKEN Yokohama Campus ; 1-7-22 Suehiro-cho ; Tsurumi-ku ; Yokohama City ; Kanagawa ; 230-0045 ; Japan
    4. Frontier Research Academy for Young Researchers
    ; Department of Bioscience and Bioinformatics ; Kyusyu Institute of Technology ; Iizuka ; Fukuoka ; 820-8502 ; Japan
    5. Kihara Institute for Biological Research
    ; Yokohama City University ; 22-2 Seto ; Kanazawa-ku ; Yokohama ; 236-0027 ; Japan
    6. Research Institute for Bioresources and Biotechnology
    ; Ishikawa Prefectural University ; 1-308 Suematsu ; Nonoichi-shi ; Ishikawa ; 921-8836 ; Japan
  • 关键词:Excess Fe ; Fe deficiency ; Iron ; Peptides ; Rice ; Small open reading frames
  • 刊名:Rice
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:7
  • 期:1
  • 全文大小:932 KB
  • 参考文献:1. Aoyama, T, Kobayashi, T, Takahashi, M, Nagasaka, S, Usuda, K, Kakei, Y, Ishimaru, Y, Nakanishi, H, Mori, S, Nishizawa, NK (2009) OsYSL18 is a rice iron(III)鈥揹eoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol 70: pp. 681-692 CrossRef
    2. Bashir, K, Inoue, H, Nagasaka, S, Takahashi, M, Nakanishi, H, Mori, S, Nishizawa, NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281: pp. 32395-32402 CrossRef
    3. Bashir, K, Ishimaru, Y, Nishizawa, NK (2010) Iron uptake and loading into rice grains. Rice 3: pp. 122-130 CrossRef
    4. Bashir, K, Ishimaru, Y, Nishizawa, NK (2011) Identification and characterization of the major mitochondrial Fe transporter in rice. Plant Signal & Behav 6: pp. 1591-1593 CrossRef
    5. Bashir, K, Ishimaru, Y, Nishizawa, NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361: pp. 189-201 CrossRef
    6. Bashir, K, Ishimaru, Y, Shimo, H, Kakei, Y, Senoura, T, Takahashi, R, Sato, Y, Sato, Y, Uozumi, N, Nakanishi, H, Nishizawa, NK (2011) Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Sci Plant Nutr 57: pp. 803-812 CrossRef
    7. Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK (2011c) The rice mitochondrial iron transporter is essential for plant growth. Nature Commun 2:322. doi:10.1038/ncomms1326
    8. Bashir, K, Nagasaka, S, Itai, RN, Kobayashi, T, Takahashi, M, Nakanishi, H, Mori, S, Nishizawa, NK (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe鈥揹eficiency in graminaceous plants. Plant Mol Biol 65: pp. 277-284 CrossRef
    9. Bashir, K, Nishizawa, N Iron proteins, plant iron transporters. In: Kretsinger, R, Uversky, V, Permyakov, E eds. (2013) Encyclopedia of metalloproteins. Springer, New York, pp. 1015-1023 CrossRef
    10. Bashir, K, Nishizawa, NK (2006) Deoxymugineic acid synthase: a gene important for Fe鈥揳cquisition and homeostasis. Plant Signal & Behav 1: pp. 290-292 CrossRef
    11. Bashir, K, Nozoye, T, Ishimaru, Y, Nakanishi, H, Nishizawa, NK (2013) Exploiting new tools for iron bio-fortification of rice. Biotech Advances 31: pp. 1624-1633 CrossRef
    12. Bashir, K, Takahashi, R, Akhtar, S, Ishimaru, Y, Nakanishi, H, Nishizawa, NK (2013) The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice 6: pp. 1-7 CrossRef
    13. Bashir K, Takahashi R, Nakanishi H, Nishizawa NK (2013c) The road to micronutrient biofortification of rice: progress and prospects. Front Plant Sci 4(15):釁? doi:10.3389/fpls.2013.00015
    14. Brunings, AM, Datnoff, LE, Ma, JF, Mitani, N, Nagamura, Y, Rathinasabapathi, B, Kirst, M (2009) Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Ann Appl Biol 155: pp. 161-170 CrossRef
    15. Egan, S, Bolger, P, Carrington, C (2007) Update of US FDA鈥檚 total diet study food list and diets. J Exp Sci Environ Epid 17: pp. 573-582 CrossRef
    16. Fageria, NK, Santos, AB, Barbosa Filho, MP, Guimar茫es, CM (2008) Iron toxicity in lowland rice. J Plant Nutr 31: pp. 1676-1697 CrossRef
    17. Guerinot, ML Iron. In: Hell, R, Mendel, R鈥揜 eds. (2010) Cell Biology of Metals and Nutrients, vol 17. Plant Cell Monographs. Springer Berlin, Heidelberg, pp. 75-94 CrossRef
    18. Guerinot, ML, Ying, Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104: pp. 815-820
    19. Hanada, K, Akiyama, K, Sakurai, T, Toyoda, T, Shinozaki, K, Shiu, SH (2010) sORF finder: a program package to identify small open reading frames with high coding potential. Bioinform 26: pp. 399-400 CrossRef
    20. Hanada, K, Higuchi鈥揟akeuchi, M, Okamoto, M, Yoshizumi, T, Shimizu, M, Nakaminami, K, Nishi, R, Ohashi, C, Iida, K, Tanaka, M, Horii, Y, Kawashima, M, Matsui, K, Toyoda, T, Shinozaki, K, Seki, M, Matsui, M (2013) Small open reading frames associated with morphogenesis are hidden in plant genomes. Proc Natl Acad Sci 110: pp. 2395-2400 CrossRef
    21. Hanada, K, Zhang, X, Borevitz, JO, Li, WH, Shiu, SH (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res 17: pp. 632-640 CrossRef
    22. Inoue, H, Higuchi, K, Takahashi, M, Nakanishi, H, Mori, S, Nishizawa, NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long鈥揹istance transport of iron and differentially regulated by iron. Plant J 36: pp. 366-381 CrossRef
    23. Inoue, H, Kobayashi, T, Nozoye, T, Takahashi, M, Kakei, Y, Suzuki, K, Nakazono, M, Nakanishi, H, Mori, S, Nishizawa, NK (2009) Rice OsYSL15 is an iron鈥搑egulated Iron(III)鈥揹eoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284: pp. 3470-3479 CrossRef
    24. Inoue, H, Takahashi, M, Kobayashi, T, Suzuki, M, Nakanishi, H, Mori, S, Nishizawa, NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66: pp. 193-203 CrossRef
    25. Ishimaru, Y, Bashir, K, Fujimoto, M, An, G, Itai, RN, Tsutsumi, N, Nakanishi, H, Nishizawa, NK (2009) Rice-specific mitochondrial iron鈥搑egulated gene (MIR) plays an important role in iron homeostasis. Mol Plant 2: pp. 1059-1066 CrossRef
    26. Ishimaru, Y, Bashir, K, Nakanishi, H, Nishizawa, NK (2011) The role of rice phenolics efflux transporter in solubilizing apoplasmic iron. Plant Signal & Behav 6: pp. 1624-1626 CrossRef
    27. Ishimaru, Y, Kakei, Y, Shimo, H, Bashir, K, Sato, Y, Sato, Y, Uozumi, N, Nakanishi, H, Nishizawa, NK (2011) A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J Biol Chem 286: pp. 24649-24655 CrossRef
    28. Ishimaru, Y, Kim, S, Tsukamoto, T, Oki, H, Kobayashi, T, Watanabe, S, Matsuhashi, S, Takahashi, M, Nakanishi, H, Mori, S, Nishizawa, NK (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci 104: pp. 7373-7378 CrossRef
    29. Ishimaru, Y, Masuda, H, Bashir, K, Inoue, H, Tsukamoto, T, Takahashi, M, Nakanishi, H, Aoki, N, Hirose, T, Ohsugi, R, Nishizawa, NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long鈥揹istance transport of iron and manganese. Plant J 62: pp. 379-390 CrossRef
    30. Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286. doi:10.1038/srep00286
    31. Itai RN, Ogo Y, Kobayashi T, Nakanishi H, Nishizawa NK (2013) Rice genes involved in phytosiderophore biosynthesis are synchronously regulated during the early stages of iron deficiency in roots. Rice 6:16. doi:10.1186/1939-8433-6-16
    32. Jin, CW, You, GY, He, YF, Tang, C, Wu, P, Zheng, SJ (2007) Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol 144: pp. 278-285 CrossRef
    33. Kakei, Y, Ishimaru, Y, Kobayashi, T, Yamakawa, T, Nakanishi, H, Nishizawa, NK (2012) OsYSL16 plays a role in the allocation of iron. Plant Mol Biol 79: pp. 583-594 CrossRef
    34. Kawahara Y, de la Bastide M, Hamilton J, Kanamori H, McCombie WR, Ouyang S, Schwartz D, Tanaka T, Wu J, Zhou S, Childs K, Davidson R, Lin H, Quesada鈥揙campo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6(1):4. doi:10.1186/1939-8433-6-4
    35. Kim, SH, Song, M, Lee, K, Hwang, SG, Jang, C, Kim, JB, Kim, S, Ha, BK, Kang, SY, Kim, D (2012) Genome-wide transcriptome profiling of ROS scavenging and signal transduction pathways in rice (Oryza sativa L.) in response to different types of ionizing radiation. Mol Biol Rep 39: pp. 11231-11248 CrossRef
    36. Kobayashi, T, Nishizawa, NK (2012) Iron uptake, translocation, and regulation in higher plants. Ann Rev Plant Biol 63: pp. 131-152 CrossRef
    37. Kobayashi, T, Suzuki, M, Inoue, H, Itai, RN, Takahashi, M, Nakanishi, H, Mori, S, Nishizawa, NK (2005) Expression of iron-acquisition-related genes in iron鈥揹eficient rice is co鈥搊rdinately induced by partially conserved iron鈥揹eficiency鈥搑esponsive elements. J Exp Bot 56: pp. 1305-1316 CrossRef
    38. Koike, S, Inoue, H, Mizuno, D, Takahashi, M, Nakanishi, H, Mori, S, Nishizawa, NK (2004) OsYSL2 is a rice metal鈥搉icotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39: pp. 415-424 CrossRef
    39. Kurakawa, T, Ueda, N, Maekawa, M, Kobayashi, K, Kojima, M, Nagato, Y, Sakakibara, H, Kyozuka, J (2007) Direct control of shoot meristem activity by a cytokinin鈥揳ctivating enzyme. Nature 445: pp. 652-655 CrossRef
    40. Lee, S, Chiecko, JC, Kim, SA, Walker, EL, Lee, Y, Guerinot, ML, An, G (2009) Disruption of OsYSL15 Leads to iron inefficiency in rice plants. Plant Physiol 150: pp. 786-800 CrossRef
    41. Lee, S, Ryoo, N, Jeon, JS, Guerinot, M, An, G (2012) Activation of rice Yellow Stripe1-Like 16 (OsYSL16) enhances iron efficiency. Mol Cells 33: pp. 117-126 CrossRef
    42. Lin, CY, Trinh, N, Fu, SF, Hsiung, YC, Chia, LC, Lin, CW, Huang, HJ (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81: pp. 507-522 CrossRef
    43. Lingam, S, Mohrbacher, J, Brumbarova, T, Potuschak, T, Fink鈥揝traube, C, Blondet, E, Genschik, P, Bauer, P (2011) Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3鈥揕IKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in arabidopsis. Plant Cell 23: pp. 1815-1829 CrossRef
    44. Luang, S, Cho, JI, Mahong, B, Opassiri, R, Akiyama, T, Phasai, K, Komvongsa, J, Sasaki, N, Yl, H, Matsuba, Y, Ozeki, Y, Jeon, JS, Ketudat Cairns, JR (2013) Rice Os9BGlu31 is a transglucosidase with the capacity to equilibrate phenolpropenoid, flavonoid and phytohormone glycoconjugates. J Biol Chem 288: pp. 10111-10123 CrossRef
    45. Ma, JF, Shinada, T, Matsuda, C, Nomoto, K (1995) Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. J Biol Chem 270: pp. 16549-16554 CrossRef
    46. Ma, JF, Taketa, S, Chang, Y鈥揅, Iwashita, T, Matsumoto, H, Takeda, K, Nomoto, K (1999) Genes controlling hydroxylations of phytosiderophores are located on different chromosomes in barley (Hordeum vulgare L.). Planta 207: pp. 590-596 CrossRef
    47. Marschner, H (1995) Mineral nutrition of higher plants. Academic, London
    48. Marschner, H, R枚mheld, V (1994) Strategies of plants for acquisition of iron. Plant Soil 165: pp. 261-274 CrossRef
    49. Mori, S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2: pp. 250-253 CrossRef
    50. Mori, S, Nishizawa, NK (1987) Methionine as a dominant precursor of phytosiderophores in graminaceae plants. Plant Cell Physiol 28: pp. 1081-1092
    51. Nagasaka, S, Takahashi, M, Itai, RN, Bashir, K, Nakanishi, H, Mori, S, Nishizawa, NK (2009) Time course analysis of gene expression over 24聽hours in Fe鈥揹eficient barley roots. Plant Mol Biol 69: pp. 621-631 CrossRef
    52. Nakanishi, H, Ogawa, I, Ishimaru, Y, Mori, S, Nishizawa, NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52: pp. 464-469 CrossRef
    53. Nakanishi, H, Yamaguchi, H, Sasakuma, T, Nishizawa, NK, Mori, S (2000) Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44: pp. 199-207 CrossRef
    54. Negishi, T, Nakanishi, H, Yazaki, J, Kishimoto, N, Fujii, F, Shimbo, K, Yamamoto, K, Sakata, K, Sasaki, T, Kikuchi, S, Mori, S, Nishizawa, NK (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30: pp. 83-94 CrossRef
    55. Neue, HU, Quijano, C, Senadhira, D, Setter, T (1998) Strategies for dealing with micronutrient disorders and salinity in lowland rice systems. Field Crop Res 56: pp. 139-155 CrossRef
    56. Nozoye, T, Inoue, H, Takahashi, M, Ishimaru, Y, Nakanishi, H, Mori, S, Nishizawa, NK (2007) The expression of iron homeostasis鈥搑elated genes during rice germination. Plant Mol Biol 64: pp. 35-47 CrossRef
    57. Nozoye, T, Itai, RN, Nagasaka, S, Takahashi, M, Nakanishi, H, Mori, S, Nishizawa, NK (2004) Diurnal changes in the expression of genes that participate in phytosiderophore synthesis in rice. Soil Sci Plant Nutr 50: pp. 1125-1131 CrossRef
    58. Nozoye, T, Nagasaka, S, Bashir, K, Takahashi, M, Kobayashi, T, Nakanishi, H, Nishizawa, NK (2014) Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXX蠁 or LL motif causes the disruption of vesicle formation or movement in rice. Plant J 77: pp. 246-260 CrossRef
    59. Nozoye T, Tsunoda K, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK (2014b) Rice nicotianamine synthase localizes to particular vesicles for proper function. Plant Signal Behav 9(3):e28660. doi:10.4161/psb.28660
    60. Nozoye, T, Nagasaka, S, Kobayashi, T, Takahashi, M, Sato, Y, Sato, Y, Uozumi, N, Nakanishi, H, Nishizawa, NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286: pp. 5446-5454 CrossRef
    61. Okamoto M, Higuchi鈥揟akeuchi M, Shimizu M, Shinozaki K, Hanada K (2014) Substantial expression of novel small open reading frames in / Oryza sativa. Plant Signal & Behav 9(1):e27848
    62. Omote, H, Hiasa, M, Matsumoto, T, Otsuka, M, Moriyama, Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Tren Pharmacol Sci 27: pp. 587-593 CrossRef
    63. Qian, H, Wang, R, Chen, J, Ding, H, Yong, W, Songlin, R, Fu, Z (2012) Analysis of enantioselective biochemical, physiological, and transcriptional effects of the chiral herbicide diclofop methyl on rice seedlings. J Agric Food Chem 60: pp. 5515-5523 CrossRef
    64. Quinet, M, Vromman, D, Clippe, A, Bertin, P, Lequeux, H, Dufey, I, Lutts, S, Lef脠Vre, I (2012) Combined transcriptomic and physiological approaches reveal strong differences between short鈥?and long鈥搕erm response of rice (Oryza sativa) to iron toxicity. Plant Cell Environ 35: pp. 1837-1859 CrossRef
    65. Ryu, CH, Lee, S, Cho, LH, Kim, SL, Lee, YS, Choi, SC, Jeong, HJ, Yi, J, Park, SJ, Han, CD, An, G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32: pp. 1412-1427 CrossRef
    66. Saito, A, Iino, T, Sonoike, K, Miwa, E, Higuchi, K (2010) Remodeling of the major light鈥揾arvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency. Plant Cell Physiol 51: pp. 2013-2030 CrossRef
    67. Suzuki M, Bashir K, Inoue H, Takahashi M, Nakanishi H, Nishizawa N (2012) Accumulation of starch in Zn-deficient rice. Rice 5(1):9. doi:10.1186/1939-8433-5-9
    68. Suzuki, M, Takahashi, M, Tsukamoto, T, Watanabe, S, Matsuhashi, S, Yazaki, J, Kishimoto, N, Kikuchi, S, Nakanishi, H, Mori, S, Nishizawa, NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc鈥揹eficient barley. Plant J 48: pp. 85-97 CrossRef
    69. Suzuki, M, Tsukamoto, T, Inoue, H, Watanabe, S, Matsuhashi, S, Takahashi, M, Nakanishi, H, Mori, S, Nishizawa, NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66: pp. 609-617 CrossRef
    70. Takahashi, M, Yamaguchi, H, Nakanishi, H, Shioiri, T, Nishizawa, NK, Mori, S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol 121: pp. 947-956 CrossRef
    71. Takahashi, R, Bashir, K, Ishimaru, Y, Nishizawa, NK, Nakanishi, H (2012) The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal & Behav 7: pp. 1605-1607 CrossRef
    72. Takahashi, R, Ishimaru, Y, Senoura, T, Shimo, H, Ishikawa, S, Arao, T, Nakanishi, H, Nishizawa, NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62: pp. 4843-4850 CrossRef
    73. Thimm, O, Bl盲sing, O, Gibon, Y, Nagel, A, Meyer, S, Kr眉ger, P, Selbig, J, M眉ller, LA, Rhee, SY, Stitt, M (2004) mapman: a user鈥揹riven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37: pp. 914-939 CrossRef
    74. Vigani G, Morandini P, Murgia I (2013) Searching iron sensors in plants by exploring the link among 2鈥欌€揙G鈥揹ependent dioxygenases, the iron deficiency response and metabolic adjustments occurring under iron deficiency. Front Plant Sci 4: doi:10.3389/fpls.2013.00169
    75. Wang, F, Bai, MY, Deng, Z, Oses-Prieto, JA, Burlingame, AL, Lu, T, Chong, K, Wang, Z鈥揧 (2010) Proteomic study identifies proteins involved in brassinosteroid regulation of rice growth. J Integr Plant Biol 52: pp. 1075-1085 CrossRef
    76. Yokosho, K, Yamaji, N, Ueno, D, Mitani, N, Ma, JF (2009) OsFRDL1 Is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149: pp. 297-305 CrossRef
    77. Zhang, H, Zhang, J, Quan, R, Pan, X, Wan, L, Huang, R (2013) EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta 237: pp. 1443-1451 CrossRef
    78. Zhang, Q, Yao, G, Hu, G, Chen, C, Tang, B, Zhang, H鈥搇, Li, Z鈥揷 (2012a) Fine mapping of qTGW3鈥?, a QTL for 1000鈥揼rain weight on chromosome 3 in rice. Journal of Integrative Agriculture 11: pp. 879-887 CrossRef
    79. Zhang, Y, Xu, YH, Yi, HY, Gong, JM (2012b) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72: pp. 400-410 CrossRef
  • 刊物主题:Plant Sciences; Plant Genetics & Genomics; Plant Breeding/Biotechnology; Agriculture; Plant Ecology;
  • 出版者:Springer US
  • ISSN:1939-8433
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700