Label-free proteomic analysis to confirm the predicted proteome of Corynebacterium pseudotuberculosis under nitrosative stress mediated by nitric oxide
详细信息    查看全文
  • 作者:Wanderson M Silva (59) (62) (63)
    Rodrigo D Carvalho (59)
    Siomar C Soares (59)
    Isabela FS Bastos (59)
    Edson L Folador (59)
    Gustavo HMF Souza (61)
    Yves Le Loir (62) (63)
    Anderson Miyoshi (59)
    Artur Silva (60)
    Vasco Azevedo (59)

    59. Depto de Biologia Geral
    ; Instituto de Ci锚ncias Biol贸gicas ; Universidade Federal de Minas Gerais ; Belo Horizonte ; Brazil
    62. Institut National de la Recherche Agronomique - INRA
    ; UMR1253 STLO ; Rennes ; 35042 ; France
    63. Agrocampus Ouest
    ; UMR1253 STLO ; Rennes ; 35042 ; France
    61. Waters Corporation
    ; MS Applications and Development Laboratory ; S茫o Paulo ; Brazil
    60. Instituto de Ci锚ncias Biol贸gicas
    ; Universidade Federal do Par谩 ; Bel茅m ; Par谩 ; Brazil
  • 关键词:Corynebacterium pseudotuberculosis ; Caseous lymphadenitis ; Proteomics ; Label ; free proteomics ; Nitrosative stress ; Nitric oxide
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:3,094 KB
  • 参考文献:1. Dorella, FA, Pacheco, LG, Oliveira, SC, Miyoshi, A, Azevedo, V (2006) Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res 37: pp. 201-218 CrossRef
    2. Baird, GJ, Fontaine, MC (2007) Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J Comp Pathol 137: pp. 179-210 CrossRef
    3. Hodgson, AL, Bird, P, Nisbet, IT (1990) Cloning, nucleotide sequence, and expression in Escherichia coli of the phospholipase D gene from Corynebacterium pseudotuberculosis. J Bacteriol 172: pp. 1256-1261
    4. Hard, GC (1975) Comparative toxic effect of the surface lipid of Corynebacterium ovis on peritoneal macrophages. Infect Immun 12: pp. 1439-1449
    5. Billington, SJ, Esmay, PA, Songer, JG, Jost, BH (2002) Identification and role in virulence of putative iron acquisition genes from Corynebacterium pseudotuberculosis. J Bacteriol 180: pp. 3233-3236
    6. Ruiz, JC, D'Afonseca, V, Silva, A, Ali, A, Pinto, AC, Santos, AR, Rocha, AA, Lopes, DO, Dorella, FA, Pacheco, LG, Costa, MP, Turk, MZ, Seyffert, N, Moraes, PM, Soares, SC, Almeida, SS, Castro, TL, Abreu, VA, Trost, E, Baumbach, J, Tauch, A, Schneider, MP, McCulloch, J, Cerdeira, LT, Ramos, RT, Zerlotini, A, Dominitini, A, Resende, DM, Coser, EM, Oliveira, LM (2011) Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One 18: pp. e18551 CrossRef
    7. Soares, SC, Silva, A, Trost, E, Blom, J, Ramos, R, Carneiro, A, Ali, A, Santos, AR, Pinto, AC, Diniz, C, Barbosa, EG, Dorella, FA, Aburjaile, F, Rocha, FS, Nascimento, KK, Guimar茫es, LC, Almeida, S, Hassan, SS, Bakhtiar, SM, Pereira, UP, Abreu, VA, Schneider, MP, Miyoshi, A, Tauch, A, Azevedo, V (2013) The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains. PLoS One 8: pp. e53818 CrossRef
    8. Pinto, AC, de S谩, PH, Ramos, RT, Barbosa, S, Barbosa, HP, Ribeiro, AC, Silva, WM, Rocha, FS, Santana, MP, de Paula Castro, TL, Miyoshi, A, Schneider, MP, Silva, A, Azevedo, V (2014) Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses. BMC Genomics 9: pp. 14 CrossRef
    9. Marletta, MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 23: pp. 927-930 CrossRef
    10. Griffith, OW, Stueh, DJ (1995) Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57: pp. 707-736 CrossRef
    11. Nathan, C, Shiloh, MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 1: pp. 8841-8848 CrossRef
    12. Singh, A, Guidry, L, Narasimhulu, KV, Mai, D, Trombley, J, Redding, KE, Giles, GI, Lancaster, JR, Steyn, AJ (2007) Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc Natl Acad Sci USA 10: pp. 11562-11567 CrossRef
    13. Ehrt, S, Schnappinger, D (2009) Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11: pp. 1170-1178 CrossRef
    14. Lu, J, Holmgren, A (2013) The thioredoxin antioxidant system. Free Radic Biol Med 8: pp. 75-87
    15. Pacheco, LG, Castro, TL, Carvalho, RD, Moraes, PM, Dorella, FA, Carvalho, NB, Slade, SE, Scrivens, JH, Feelisch, M, Meyer, R, Miyoshi, A, Oliveira, SC, Dowson, CG, Azevedo, V (2012) A role for sigma factor 蟽(E) in Corynebacterium pseudotuberculosis resistance to nitric oxide/peroxide stress. Front Microbiol 3: pp. 126 CrossRef
    16. Moura-Costa, LF, Paule, BJA, Freire, SM, Nascimento, I, Schaer, R, Regis, LF, Vale, VLC, Matos, DP, Bahia, RC, Carminati, R, Meyer, R (2002) Chemically defined synthetic medium for Corynebacterium pseudotuberculosis culture. Rev Bras Sa煤de Prod An 3: pp. 1-9
    17. Silva, JC, Gorenstein, MV, Li, GZ, Vissers, JP, Geromanos, SJ (2006) Absolute quantification of proteins by LC/MSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5: pp. 144-156 CrossRef
    18. Gilar, M, Olivova, P, Daly, AE, Gebler, JC (2005) Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 28: pp. 1694-1703 CrossRef
    19. Silva, JC, Denny, R, Dorschel, CA, Gorenstein, M, Kass, IJ, Li, GZ, McKenna, T, Nold, MJ, Richardson, K, Young, P, Geromanos, S (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77: pp. 2187-2000 CrossRef
    20. Geromanos, SJ, Vissers, JP, Silva, JC, Dorschel, CA, Li, GZ, Gorenstein, MV, Bateman, RH, Langridge, JI (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9: pp. 1683-1695 CrossRef
    21. Li, GZ, Vissers, JP, Silva, JC, Golick, D, Gorenstein, MV, Geromanos, SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9: pp. 1696-1719 CrossRef
    22. Curty, N, Kubitschek-Barreira, PH, Neves, GW, Gomes, D, Pizzatti, L, Abdelhay, E, Souza, GH, Lopes-Bezerra, LM (2014) Discovering the infectome of human endothelial cells challenged with Aspergillus fumigatus applying a mass spectrometry label-free approach. J Proteomics 31: pp. 126-140 CrossRef
    23. Levin, Y, Hadetzky, E, Bahn, S (2011) Quantification of proteins using data-independent analysis (MSE) in simple and complex samples: a systematic evaluation. Proteomics 11: pp. 3273-3287 CrossRef
    24. Barinov, A, Loux, V, Hammani, A, Nicolas, P, Langella, P, Ehrlich, D, Maguin, E, van de Guchte, M (2009) Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria. Proteomics 9: pp. 61-73 CrossRef
    25. Conesa, A, Gotz, S, Garc铆a-Gmez, JM, Terol, J, Taln, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 15: pp. 3674-3676 CrossRef
    26. Soares, SC, Abreu, VA, Ramos, RT, Cerdeira, L, Silva, A, Baumbach, J, Trost, E, Tauch, A, Hirata, R, Mattos-Guaraldi, AL, Miyoshi, A, Azevedo, V (2012) PIPs: pathogenicity island prediction software. PLoS One 7: pp. e30848 CrossRef
    27. Rezende, AM, Folador, EL, Resende Dde, M, Ruiz, JC (2012) Computational prediction of protein-protein interactions in Leishmania predicted proteomes. PLoS One 7: pp. e51304 CrossRef
    28. Shannon, P, Markiel, A, Ozier, O, Baliga, NS, Wang, JT, Ramage, D, Amin, N, Schwikowski, B, Ideker, T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: pp. 2498-2504 CrossRef
    29. Pauling, J, R枚ttger, R, Tauch, A, Azevedo, V, Baumbach, J (2012) CoryneRegNet 6.0 -Updated database content, new analysis methods and novel features focusing on community demands. Nucleic Acids Res 40: pp. D610-614 CrossRef
    30. Richardson, AR, Soliven, KC, Castor, ME, Barnes, PD, Libby, SJ, Fang, FC (2009) The base excision repair system of Salmonella enterica serovar typhimurium counteracts DNA damage by host nitric oxide. PLoS Pathog 5: pp. e1000451 CrossRef
    31. Sedgwick, B (2004) Repairing DNA-methylation damage. Nat Rev Mol Cell Biol 5: pp. 148-157 CrossRef
    32. Baharoglu, Z, Mazel, D (2014) SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38: pp. 1126-1145 CrossRef
    33. Cano, DA, Pucciarelli, MG, Garc铆a-del Portillo, F, Casades煤s, J (2002) Role of the recBCD recombination pathway in Salmonella virulence. J Bacteriol 184: pp. 592-595 CrossRef
    34. Koskiniemi, S, Andersson, DI (2009) Translesion DNA polymerases are required for spontaneous deletion formation in Salmonella typhimurium. Proc Natl Acad Sci U S A 23: pp. 10248-10253 CrossRef
    35. Butala, M, Zgur-Bertok, D, Busby, SJ (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66: pp. 82-93 CrossRef
    36. Voskuil, MI, Bartek, IL, Visconti, K, Schoolnik, GK (2011) The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol 13: pp. 105
    37. Green, J, Paget, MS (2004) Bacterial redox sensors. Nat Rev Microbiol 2: pp. 954-966 CrossRef
    38. Green, J, Rolfe, MD, Smith, LJ (2014) Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 4: pp. 5(4)
    39. Singh, A, Crossman, DK, Mai, D, Guidry, L, Voskuil, MI, Renfrow, MB, Steyn, AJ (2009) Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 5: pp. e1000545 CrossRef
    40. Chawla, M, Parikh, P, Saxena, A, Munshi, M, Mehta, M, Mai, D, Srivastava, AK, Narasimhulu, KV, Redding, KE, Vashi, N, Kumar, D, Steyn, AJ, Singh, A (2012) Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microbiol 85: pp. 1148-1165 CrossRef
    41. Larsson, C, Luna, B, Ammerman, NC, Maiga, M, Agarwal, N, Bishai, WR (2012) Gene expression of Mycobacterium tuberculosis putative transcription factors WhiB1-7 in redox environments. PLoS One 7: pp. e37516 CrossRef
    42. Hobman, JL (2007) MerR family transcription activators: similar designs, different specificities. Mol Microbiol 63: pp. 1275-1278 CrossRef
    43. McEwan, AG, Djoko, KY, Chen, NH, Cou帽ago, RL, Kidd, SP, Potter, AJ, Jennings, MP (2011) Novel bacterial MerR-like regulators their role in the response to carbonyl and nitrosative stress. Adv Microb Physiol 58: pp. 1-22 CrossRef
    44. Brown, NL, Stoyanov, JV, Kidd, SP, Hobman, JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27: pp. 145-163 CrossRef
    45. Maddocks, SE, Oyston, PC (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154: pp. 3609-3623 CrossRef
    46. Chen, S, Wang, H, Katzianer, DS, Zhong, Z, Zhu, J (2013) LysR family activator-regulated major facilitator superfamily transporters are involved in Vibrio cholerae antimicrobial compound resistance and intestinal colonisation. Int J Antimicrob Agents 41: pp. 188-192 CrossRef
    47. Gonzalez-Flecha, B, Demple, B (1999) Role for the oxyS gene in regulation of intracellular hydrogen peroxide in Escherichia coli. J Bacteriol 181: pp. 3833-3836
    48. Verneuil, N, Rinc茅, A, Sanguinetti, M, Posteraro, B, Fadda, G, Auffray, Y, Hartke, A, Giard, JC (2005) Contribution of a PerR-like regulator to the oxidative-stress response and virulence of Enterococcus faecalis. Microbiology 151: pp. 3997-4004 CrossRef
    49. Lahiri, A, Das, P, Chakravortty, D (2008) The LysR-type transcriptional regulator Hrg counteracts phagocyte oxidative burst and imparts survival advantage to Salmonella enterica serovar Typhimurium. Microbiology 154: pp. 2837-2846 CrossRef
    50. Reen, FJ, Haynes, JM, Mooij, MJ, O'Gara, F (2013) A non-classical LysR-type transcriptional regulator PA2206 is required for an effective oxidative stress response in Pseudomonas aeruginosa. PLoS One 8: pp. e54479 CrossRef
    51. Comtois, SL, Gidley, MD, Kelly, DJ (2003) Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology 149: pp. 121-129 CrossRef
    52. Brenot, A, King, KY, Janowiak, B, Griffith, O, Caparon, MG (2004) Contribution of glutathione peroxidase to the virulence of Streptococcus pyogenes. Infect Immun 72: pp. 408-413 CrossRef
    53. Kalkowski, I, Conrad, R (1991) Metabolism of nitric oxide in denitrifying Pseudomonas aeruginosa and nitrate-respiring Bacillus cereus. FEMS Microbiol Lett 15: pp. 107-111 CrossRef
    54. de Boer, AP, van der Oost, J, Reijnders, WN, Westerhoff, HV, Stouthamer, AH, van Spanning, RJ (1996) Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans. Eur J Biochem 15: pp. 592-600 CrossRef
    55. Kakishima, K, Shiratsuchi, A, Taoka, A, Nakanishi, Y, Fukumori, Y (2007) Participation of nitric oxide reductase in survival of Pseudomonas aeruginosa in LPS-activated macrophages. Biochem Biophys Res Commun 6: pp. 587-591 CrossRef
    56. Hendriks, J, Oubrie, A, Castresana, J, Urbani, A, Gemeinhardt, S, Saraste, M (2000) Nitric oxide reductases in bacteria. Biochim Biophys Acta 15: pp. 266-273 CrossRef
    57. Stevanin, TM, Poole, RK, Demoncheaux, EA, Read, RC (2002) Flavohemoglobin Hmp protects Salmonella enterica serovar Typhimurium from nitric oxide-related killing by human macrophages. Infect Immun 70: pp. 4399-4405 CrossRef
    58. Stevanin, TM, Moir, JW, Read, RC (2005) Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect Immun 73: pp. 3322-3329 CrossRef
    59. Stern, AM, Liu, B, Bakken, LR, Shapleigh, JP, Zhu, J (2013) A novel protein protects bacterial iron-dependent metabolism from nitric oxide. J Bacteriol 195: pp. 4702-4708 CrossRef
    60. Brown, GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome C oxidase. Biochim Biophys Acta 1: pp. 46-57 CrossRef
    61. Kadenbach, B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 5: pp. 77-94 CrossRef
    62. Payne, JW, Smith, MW (1994) Peptide transport by micro-organisms. Adv Microb Physiol 36: pp. 1-80 CrossRef
    63. Mueller, JH, Klotz, AW (1938) Pantothenic acid as a growth factor for the diphtheria bacillus. J Am Chem Soc 60: pp. 3086-3087 CrossRef
    64. Mcllwain, H (1939) Pantothenic acid and the growth of Streptococcus haemolyticus. Br J Exp Pathol 20: pp. 330-333
    65. Sassetti, CM, Boyd, DH, Rubin, EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: pp. 77-84 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance. Results We characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair. Conclusions Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700