SNARC for numerosities is modulated by comparative instruction (and resembles some non-numerical effects)
详细信息    查看全文
  • 作者:Katarzyna Patro ; Samuel Shaki
  • 关键词:Number line ; Numerosity ; SNARC ; Spatial representation
  • 刊名:Cognitive Processing
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:17
  • 期:2
  • 页码:127-137
  • 全文大小:491 KB
  • 参考文献:Bächtold D, Baumüller M, Brugger P (1998) Stimulus–response compatibility in representational space. Neuropsychologia 36:731–735CrossRef PubMed
    Buckley PB, Gillman CB (1974) Comparisons of digits and dot patterns. J Exp Psychol 103:1131CrossRef PubMed
    Bulf H, Macchi Cassia V, de Hevia MD (2014) Are numbers, size and brightness equally efficient in orienting visual attention? Evidence from an eye-tracking study. PLoS ONE 9:e99499CrossRef PubMed PubMedCentral
    Cantlon JF, Platt ML, Brannon EM (2009) Beyond the number domain. Trend Cogn Sci 13:83–91CrossRef
    Chen Q, Verguts T (2010) Beyond the mental number line: a neural network model of number–space interactions. Cognitive Psychol 60:218–240CrossRef
    Cohen Kadosh R, Walsh V (2009) Numerical representation in the parietal lobes: abstract or not abstract? Behav Brain Sci 32:313–328CrossRef PubMed
    Cohen Kadosh R, Lammertyn J, Izard V (2008) Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Prog Neurobiol 84:132–147CrossRef PubMed
    Cordes S, Brannon EM (2008) Quantitative competencies in infancy. Dev Sci 11:803–808CrossRef PubMed
    De Smedt B, Noël MP, Gilmore C, Ansari D (2013) How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends Neurosci Educ 2:48–55CrossRef
    De Hevia MD, Girelli L, Addabbo M, Macchi Cassia V (2014) Human infants’ preference for left-to-right oriented increasing numerical sequences. PloS One 9:e96412CrossRef PubMed PubMedCentral
    Dehaene S (1992) Varieties of numerical abilities. Cognition 44:1–42CrossRef PubMed
    Dehaene S (1997) The number sense: how the mind creates mathematics. Oxford University Press, New York
    Dehaene S, Cohen L (1995) Towards an anatomical and functional model of number processing. Math Cogn 1:83–120
    Dehaene S, Bossini S, Giraux P (1993) The mental representation of parity and number magnitude. J Exp Psychol Gen 122:371CrossRef
    Dehaene S, Dehaene-Lambertz G, Cohen L (1998) Abstract representations of numbers in the animal and human brain. Trends Neurosci 21:355–361CrossRef PubMed
    Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20:487–506CrossRef PubMed
    Ebersbach M, Luwel K, Verschaffel L (2014) Further evidence for a spatial-numerical association in children before formal schooling. Exp Psychol 61:323–329CrossRef PubMed
    Feigenson L, Dehaene S, Spelke E (2004) Core systems of number. Trends Cogn Sci 8:307–314CrossRef PubMed
    Feigenson L, Libertus ME, Halberda J (2013) Links between the intuitive sense of number and formal mathematics ability. Child Dev Perspect 7:74–79CrossRef PubMed PubMedCentral
    Fias W, Brysbaert M, Geypens F, d’Ydewalle G (1996) The importance of magnitude information in numerical processing: evidence from the SNARC effect. Math Cogn 2:95–110CrossRef
    Fias W, van Dijck JP, Gevers W (2011) How number is associated with space?: the role of working memory. In: Dehaene S, Brannon E (eds) Space, time and number in the brain—searching for evolutionary foundations of mathematical thought: attention and performance XXIV. Elsevier, Amsterdam, pp 133–148CrossRef
    Fischer MH, Shaki S (2014) Spatial associations in numerical cognition—from single digits to arithmetic. Q J Exp Psychol 67:1461–1483CrossRef
    Fischer MH, Shaki S (2015) Measuring spatial-numerical associations: evidence for a purely conceptual link. Psychol Res (ahead of print)
    Fischer MH, Shaki S, Cruise A (2009) It takes only one word to quash the SNARC. Exp Psychol 56:361–366CrossRef PubMed
    Fischer MH, Mills RA, Shaki S (2010) How to cook a SNARC: number placement in text rapidly changes spatial-numerical associations. Brain Cogn 72:333–336CrossRef PubMed
    Fumarola A, Prpic V, Da Pos O, Murgia M, Umiltà C, Agostini T (2014) Automatic spatial association for luminance. Atten Percept Psychophys 76:759–765CrossRef PubMed
    Gallistel CR, Gelman R (2000) Non-verbal numerical cognition: from reals to integers. Trends Cogn Sci 4:59–65CrossRef PubMed
    Gebuis T, Reynvoet B (2012) The role of visual information in numerosity estimation. PLoS ONE 7:e37426CrossRef PubMed PubMedCentral
    Gevers W, Lammertyn J (2005) The hunt for SNARC. Psychol Sci 47:10–21
    Gevers W, Reynvoet B, Fias W (2003) The mental representation of ordinal sequences is spatially organized. Cognition 87:B87–B95CrossRef PubMed
    Gevers W, Reynvoet B, Fias W (2004) The mental representation of ordinal sequences is spatially organised: evidence from days of the week. Cortex 40:171–172CrossRef PubMed
    Gilmore CK, McCarthy SE, Spelke ES (2010) Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition 115:394–406CrossRef PubMed PubMedCentral
    Gilmore C, Attridge N, Clayton S, Cragg L, Johnson S, Marlow N, Simms V, Inglis M (2013) Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS ONE 8:e67374CrossRef PubMed PubMedCentral
    Ishihara M, Keller PE, Rossetti Y, Prinz W (2008) Horizontal spatial representations of time: evidence for the STEARC effect. Cortex 44:454–461CrossRef PubMed
    Jordan KE, Brannon EM (2006) A common representational system governed by Weber’s law: nonverbal numerical similarity judgments in 6-year-olds and rhesus macaques. J Exp Child Psychol 95:215–229CrossRef PubMed
    Le Corre M, Carey S (2007) One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles. Cognition 105:395–438CrossRef PubMed
    Libertus ME, Feigenson L, Halberda J (2011) Preschool acuity of the approximate number system correlates with school math ability. Dev Sci 14:1292–1300CrossRef PubMed PubMedCentral
    Lindemann O, Abolafia JM, Pratt J, Bekkering H (2008) Coding strategies in number space: memory requirements influence spatial–numerical associations. Q J Exp Psychol 61:515–524CrossRef
    Luccio R, Fumarola A, Tamburini G, Agostini T (2012) The spatial representation of non-symbolic numerical quantities. Proc Fechner Day 28:321–327
    Mitchell T, Bull R, Cleland AA (2012) Implicit response-irrelevant number information triggers the SNARC effect: evidence using a neural overlap paradigm. Q J Exp Psychol 65:1945–1961CrossRef
    Nathan MB, Shaki S, Salti M, Algom D (2009) Numbers and space: associations and dissociations. Psychon Bull Rev 16:578–582CrossRef PubMed
    Nuerk HC, Wood G, Willmes K (2005) The universal SNARC effect. Exp Psychol 52:187–194CrossRef PubMed
    Park J, Brannon EM (2013) Training the approximate number system improves math proficiency. Psychol Sci 24:2013–2019CrossRef PubMed PubMedCentral
    Patro K, Haman M (2012) The spatial–numerical congruity effect in preschoolers. J Exp Child Psychol 111:534–542CrossRef PubMed
    Piazza M (2010) Neurocognitive start-up tools for symbolic number representations. Trends Cogn Sci 14:542–551CrossRef PubMed
    Platt JR, Johnson DM (1971) Localization of position within a homogeneous behavior chain: effects of error contingencies. Learn Motiv 2:386–414CrossRef
    Previtali P, de Hevia MD, Girelli L (2010) Placing order in space: the SNARC effect in serial learning. Exp Brain Res 201:599–605CrossRef PubMed
    Price GR, Palmer D, Battista C, Ansari D (2012) Nonsymbolic numerical magnitude comparison: reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychol 140:50–57CrossRef
    Rashidi-Ranjbar N, Goudarzvand M, Jahangiri S, Brugger P, Loetscher T (2014) No horizontal numerical mapping in a culture with mixed-reading habits. Front Hum Neurosci 8:72CrossRef PubMed PubMedCentral
    Ren P, Nicholls ME, Ma YY, Chen L (2011) Size matters: non-numerical magnitude affects the spatial coding of response. PLoS ONE 6:e23553CrossRef PubMed PubMedCentral
    Rugani R, Vallortigara G, Priftis K, Regolin L (2015) Number-space mapping in the newborn chick resembles humans’ mental number line. Science 347:534–536CrossRef PubMed
    Rusconi E, Kwan B, Giordano BL, Umilta C, Butterworth B (2006) Spatial representation of pitch height: the SMARC effect. Cognition 99:113–129CrossRef PubMed
    Sasanguie D, Göbel SM, Moll K, Smets K, Reynvoet B (2013) Approximate number sense, symbolic number processing, or number–space mappings: What underlies mathematics achievement? J Exp Child Psychol 114:418–431CrossRef PubMed
    Sasanguie D, Defever E, Maertens B, Reynvoet B (2014) The approximate number system is not predictive for symbolic number processing in kindergarteners. Q J Exp Psychol 67:271–280CrossRef
    Shaki S, Fischer MH (2008) Reading space into numbers—a cross-linguistic comparison of the SNARC effect. Cognition 108:590–599CrossRef PubMed
    Shaki S, Gevers W (2011) Cultural characteristics dissociate magnitude and ordinal information processing. J Cross Cult Psychol 42:639–650CrossRef
    Shaki S, Petrusic WM (2005) On the mental representation of negative numbers: context-dependent SNARC effects with comparative judgments. Psychon Bull Rev 12:931–937CrossRef PubMed
    Shaki S, Fischer MH, Petrusic WM (2009) Reading habits for both words and numbers contribute to the SNARC effect. Psychon Bull Rev 16:328–331CrossRef PubMed
    Shaki S, Petrusic WM, Leth-Steensen C (2012) SNARC effects with numerical and non-numerical symbolic comparative judgments: instructional and cultural dependencies. J Exp Psychol Hum Percept Perform 38:515–530CrossRef PubMed
    Szűcs D, Nobes A, Devine A, Gabriel FC, Gebuis T (2013) Visual stimulus parameters seriously compromise the measurement of approximate number system acuity and comparative effects between adults and children. Frontiers in Psychology 4:444PubMed PubMedCentral
    Vallesi A, Binns MA, Shallice T (2008) An effect of spatial–temporal association of response codes: understanding the cognitive representations of time. Cognition 107:501–527CrossRef PubMed
    Vallesi A, Weisblatt Y, Semenza C, Shaki S (2014) Cultural modulations of space–time compatibility effects. Psychon Bull Rev 21:666–669CrossRef PubMed
    van Dijck JP, Fias W (2011) A working memory account for spatial–numerical associations. Cognition 119:114–119CrossRef PubMed
    van Elk M, van Schie HT, Bekkering H (2010) From left to right: processing acronyms referring to names of political parties activates spatial associations. Q J Exp Psychol 63:2202–2219CrossRef
    Van Opstal F, Verguts T (2013) Is there a generalized magnitude system in the brain? Behavioral, neuroimaging, and computational evidence. Front Psychol 4:435PubMed PubMedCentral
    Vicario CM, Rumiati RI (2014) Left-right compatibility in the processing of trading verbs. Front Behav Neurosci 8:16CrossRef PubMed PubMedCentral
    Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trend Cogn Sci 7:483–488CrossRef
    Wood G, Willmes K, Nuerk HC, Fischer MH (2008) On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychol Sci Q 50:489
    Wynn K (1992) Children’s acquisition of the number words and the counting system. Cogn Psychol 24:220–251CrossRef
    Xu F, Spelke ES (2000) Large number discrimination in 6-month-old infants. Cognition 74:B1–B11CrossRef PubMed
    Xu F, Spelke ES, Goddard S (2005) Number sense in human infants. Dev Sci 8:88–101CrossRef PubMed
    Yates M, Nemeh F, Loetscher T, Ma-Wyatt A, Nicholls ME (2013) Numerosity is represented spatially: evidence from a ‘SNARC’ task. Perception 42:132–133
    Zebian S (2005) Linkages between number concepts, spatial thinking, and directionality of writing: the SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. J Cogn Cult 5:165–190CrossRef
  • 作者单位:Katarzyna Patro (1) (2)
    Samuel Shaki (3)

    1. Leibniz-Institut für Wissensmedien, Tübingen, Germany
    2. Department of Psychology, Warsaw University, Warsaw, Poland
    3. Department of Behavioral Sciences, Ariel University, Ariel, Israel
  • 刊物主题:Neurosciences; Behavioural Sciences; Artificial Intelligence (incl. Robotics);
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1612-4790
文摘
The spatial–numerical association of response codes (SNARC) effect is observed for both numerical (Arabic digits) and non-numerical stimuli (size, duration, height). However, in a context of comparative judgment, Arabic numbers are mapped onto space differently from sizes and heights: SNARC for Arabic digits is formed consistently in a certain cultural reading direction, whereas SNARC for sizes and heights is additionally modulated by comparative instruction (it reverses when participants choose larger magnitudes). In the present study, we test whether the spatial characteristic of magnitude processing revealed in a context of comparison is determined by a presence or lack of numerical content of the processed information, or it depends on specific directional experience (e.g., left-to-right ordering) associated with the processed magnitude format. We examine the SNARC effect with the pairwise comparison design, by using non-symbolic numerical stimuli (objects’ collections), for which the left-to-right spatial structure is not as exceedingly overlearned as for Arabic numbers. We asked participants from two reading cultures (left-to-right vs. mixed reading culture) to compare numerosities of two sets, choosing either a larger or smaller one. SNARC emerged in both groups. Additionally, it was modulated by comparative instruction: It appeared in a left-to-right direction when participants selected a smaller set, but it tended to reverse when participants selected a larger set. We conclude that spatial processing of numerosities is dissociated from spatial processing of Arabic numbers, at least in a context of comparative judgment. This dissociation could reflect differences in spatial ordering experience specific to a certain numerical input.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700