Modified SFEM for computational homogenization of heterogeneous materials with microstructural geometric uncertainties
详细信息    查看全文
  • 作者:Dmytro Pivovarov ; Paul Steinmann
  • 关键词:Stochastic FEM ; Computational homogenization ; Random geometry
  • 刊名:Computational Mechanics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:57
  • 期:1
  • 页码:123-147
  • 全文大小:11,496 KB
  • 参考文献:1.Alsayednoor J, Harrison P, Guo Z (2013) Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mech Mater 66:7–20. doi:10.​1016/​j.​mechmat.​2013.​06.​006 CrossRef
    2.Andrianov I, Danishevsky V, Tokarzewski S (2000) Quasifractional approximants in the theory of composite materials. Acta Appl Math 61(1–3):29–35. doi:10.​1023/​A:​1006455311626 MathSciNet CrossRef MATH
    3.Andrianov I, Danishevs’kyy VV, Weichert D (2008) Simple estimation on effective transport properties of a random composite material with cylindrical fibres. Z angew Math Phys 59(5):889–903. doi:10.​1007/​s00033-007-6146-3 MathSciNet CrossRef MATH
    4.Andrianov IV, Danishevs’kyy VV, Kholod EG (2012) Homogenization of viscoelastic composites with fibres of diamond-shaped cross-section. Acta Mech 223(5):1093–1100. doi:10.​1007/​s00707-011-0608-6 MathSciNet CrossRef MATH
    5.Andrianov IV, Danishevs’kyy VV, Weichert D (2002) Asymptotic determination of effective elastic properties of composite materials with fibrous square-shaped inclusions. Eur J Mech A/Solids 21(6):1019–1036. doi:10.​1016/​S0997-7538(02)01250-0 CrossRef MATH
    6.Castaneda PP, Galipeau E (2011) Homogenization-based constitutive models for magnetorheological elastomers at finite strain. J Mech Phys Solids 59(2):194–215. doi:10.​1016/​j.​jmps.​2010.​11.​004 MathSciNet CrossRef MATH
    7.Chatzigeorgiou G, Javili A, Steinmann P (2013) Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Math Mech Solids 2012:193–211. doi:10.​1177/​1081286512458109​ MathSciNet
    8.Cottereau R (2013) A stochastic-deterministic coupling method for multiscale problems. Application to numerical homogenization of random materials. Procedia IUTAM 6(0):35–43. doi:10.​1016/​j.​piutam.​2013.​01.​004 . http://​www.​sciencedirect.​com/​science/​article/​pii/​S221098381300005​9 . IUTAM symposium on multiscale problems in stochastic mechanics
    9.Cottereau R, Clouteau D, Ben Dhia H (2011) Localized modeling of uncertainty in the arlequin framework. In: Belyaev AK, Langley RS (eds) IUTAM symposium on the vibration analysis of structures with uncertainties, IUTAM Bookseries, vol. 27. Springer Netherlands, pp 457–468
    10.Dimas LS, Giesa T, Buehler MJ (2014) Coupled continuum and discrete analysis of random heterogeneous materials: elasticity and fracture. J Mech Phys Solids 63:481–490. doi:10.​1016/​j.​jmps.​2013.​07.​006 MathSciNet CrossRef
    11.Ernst O, Powell C, Silvester D, Ullmann E (2009) Efficient solvers for a linear stochastic galerkin mixed formulation of diffusion problems with random data. SIAM J Sci Comput 31(2):1424–1447. doi:10.​1137/​070705817 MathSciNet CrossRef MATH
    12.Ernst OG, Mugler A, Starkloff HJ, Ullmann E (2012) On the convergence of generalized polynomial chaos expansions. ESAIM. Math Model Numer Anal 46:317–339. doi:10.​1051/​m2an/​2011045 MathSciNet CrossRef MATH
    13.Ernst OG, Ullmann E (2010) Stochastic galerkin matrices. SIAM J Matrix Anal Appl 31(4):1848–1872. doi:10.​1137/​080742282 MathSciNet CrossRef MATH
    14.Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304. doi:10.​1002/​nme.​2914 MathSciNet MATH
    15.Galipeau E, Castaneda PP (2012) The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites. Int J Solids Struct 49(1):1–17. doi:10.​1016/​j.​ijsolstr.​2011.​08.​014 CrossRef
    16.Galipeau E, Castaneda PP (2013) A finite-strain constitutive model for magnetorheological elastomers: magnetic torques and fiber rotations. J Mech Phys Solids 61(4):1065–1090. doi:10.​1016/​j.​jmps.​2012.​11.​007 MathSciNet CrossRef
    17.Galipeau E, Rudykh S, deBotton G, Castaneda PP (2014) Magnetoactive elastomers with periodic and random microstructures. Int J Solids Struct 51(8):3012–3024. doi:10.​1016/​j.​ijsolstr.​2014.​04.​013 CrossRef
    18.Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Dover Publications, inc., New York
    19.Hadigol M, Doostan A, Matthies HG, Niekamp R (2014) Partitioned treatment of uncertainty in coupled domain problems: a separated representation approach. Comput Methods Appl Mech Eng 274:103–124. doi:10.​1016/​j.​cma.​2014.​02.​004 MathSciNet CrossRef MATH
    20.Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magneto-mechanics. Int J Solids Struct 50(25—-26):4197–4216. doi:10.​1016/​j.​ijsolstr.​2013.​08.​024 CrossRef
    21.Khoromskij B, Litvinenko A, Matthies H (2009) Application of hierarchical matrices for computing the karhunen-loeve expansion. Computing 84(1–2):49–67. doi:10.​1007/​s00607-008-0018-3 MathSciNet CrossRef MATH
    22.Kucerova A, Sykora J, Rosic B, Matthies HG (2012) Acceleration of uncertainty updating in the description of transport processes in heterogeneous materials. J Comput Appl Math 236(18):4862–4872. doi:10.​1016/​j.​cam.​2012.​02.​003 . http://​www.​sciencedirect.​com/​science/​article/​pii/​S037704271200060​X . FEMTEC 2011: 3rd International Conference on Computational Methods in Engineering and Science, May 9–13, 2011
    23.Leclerc W, Karamian-Surville P, Vivet A (2013) An efficient stochastic and double-scale model to evaluate the effective elastic properties of 2d overlapping random fibre composites. Comput Mater Sci 69:481–493. doi:10.​1016/​j.​commatsci.​2012.​10.​036 CrossRef
    24.Legrain G, Cartraud P, Perreard I, Moes N (2011) An x-fem and level set computational approach for image-based modelling: application to homogenization. Int J Numer Methods Eng 86(7):915–934. doi:10.​1002/​nme.​3085 CrossRef MATH
    25.Ma J, Sahraee S, Wriggers P, De Lorenzis L (2015) Stochastic multiscale homogenization analysis of heterogeneous materials under finite deformations with full uncertainty in the microstructure. Comput Mech 55(5):819–835. doi:10.​1007/​s00466-015-1136-3 MathSciNet CrossRef
    26.Ma J, Zhang J, Li L, Wriggers P, Sahraee S (2014) Random homogenization analysis for heterogeneous materials with full randomness and correlation in microstructure based on finite element method and monte-carlo method. Comput Mech 54(6):1395–1414. doi:10.​1007/​s00466-014-1065-6 MathSciNet CrossRef MATH
    27.Moes N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(2830):3163–3177. doi:10.​1016/​S0045-7825(03)00346-3 CrossRef MATH
    28.Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150. doi:10.​1002/​(SICI)1097-0207(19990910)46 CrossRef MATH
    29.Nouy A, Clement A, Schoefs F, Moes N (2008) An extended stochastic finite element method for solving stochastic partial differential equations on random domains. Comput Methods Appl Mech Eng 197(51—-52):4663–4682. doi:10.​1016/​j.​cma.​2008.​06.​010 MathSciNet CrossRef MATH
    30.Pajonk O, Rosic BV, Matthies HG (2013) Sampling-free linear bayesian updating of model state and parameters using a square root approach. Comput Geosci 55(0):70–83. doi:10.​1016/​j.​cageo.​2012.​05.​017 CrossRef
    31.Papoulis A, Pillai SU (2001) Probability, random variables and stochastic processes. McGraw-Hill Education, New York
    32.Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in FORTRAN: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge
    33.Rosic B, Matthies H (2008) Computational approaches to inelastic media with uncertain parameters. J Serbian Soc Comput Mech 2(1):28–43
    34.Rosic B, Matthies H, Zivkovic M (2011) Uncertainty quantification of inifinitesimal elastoplasticity. Sci Tech Rev 61(2):3–9
    35.Rosic B, Matthies HG (2011) Plasticity described by uncertain parameters: a variational inequality approach. In: Proceedings of XI international conference on computational plasticity, fundamentals and applications (COMPLAS), pp 385–395
    36.Rosic BV (2012) Variational formulations and functional approximation algorithms in stochastic plasticity of materials. Ph.D. thesis, Faculty of Engineering, Kragujevac. doi:10.​2298/​KG20121116ROSIC
    37.Sakata S, Ashida F (2011) Hierarchical stochastic homogenization analysis of a particle reinforced composite material considering non-uniform distribution of microscopic random quantities. Comput Mech 48(5):529–540. doi:10.​1007/​s00466-011-0604-7 MathSciNet CrossRef MATH
    38.Sakata S, Ashida F, Enya K (2012) A microscopic failure probability analysis of a unidirectional fiber reinforced composite material via a multiscale stochastic stress analysis for a microscopic random variation of an elastic property. Comput Mater Sci 62(0):35–46. doi:10.​1016/​j.​commatsci.​2012.​05.​008 CrossRef
    39.Sakata S, Ashida F, Kojima T (2008) Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method. Int J Solids Struct 45(2526):6553–6565. doi:10.​1016/​j.​ijsolstr.​2008.​08.​017 CrossRef MATH
    40.Sakata S, Ashida F, Zako M (2008) Kriging-based approximate stochastic homogenization analysis for composite materials. Comput Methods Appl Mech Eng 197(2124):1953–1964. doi:10.​1016/​j.​cma.​2007.​12.​011 CrossRef MATH
    41.Shynk JJ (2012) Probability, random variables, and random processes: theory and signal processing applications. Wiley-Interscience, Hoboken
    42.Spieler C, Kaestner M, Goldmann J, Brummund J, Ulbricht V (2013) Xfem modeling and homogenization of magnetoactive composites. Acta Mech 224(11):2453–2469. doi:10.​1007/​s00707-013-0948-5 MathSciNet CrossRef MATH
    43.Ullmann E, Elman HC, Ernst OG (2012) Efficient iterative solvers for stochastic galerkin discretizations of log-transformed random diffusion problems. SIAM J Sci Comput 34(2):659–682. doi:10.​1137/​110836675 MathSciNet CrossRef
    44.Zaccardi C, Chamoin L, Cottereau R, Ben Dhia H (2013) Error estimation and model adaptation for a stochastic-deterministic coupling method based on the arlequin framework. Int J Numer Meth Eng 96(2):87–109. doi:10.​1002/​nme.​4540 MathSciNet CrossRef
    45.Zohdi T, Feucht M, Gross D, Wriggers P (1998) A description of macroscopic damage through microstructural relaxation. Int J Numer Methods Eng 43(3):493–506. doi:10.​1002/​(SICI)1097-0207(19981015)43 CrossRef MATH
  • 作者单位:Dmytro Pivovarov (1)
    Paul Steinmann (2)

    1. Chair of Applied Mechanics, University of Erlangen-Nuremberg, Paul-Gordan-Str. 3, Erlangen, 91052, Germany
    2. Chair of Applied Mechanics, University of Erlangen-Nuremberg, Egerlandstraße 5, Erlangen, 91058, Germany
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Numerical and Computational Methods in Engineering
    Computational Science and Engineering
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0924
文摘
In the current work we examine the application of the stochastic finite element method (SFEM) to the modeling of representative volume elements for heterogeneous materials. Uncertainties in the geometry of the microstructure result in the random nature of the solution fields thus requiring use of the stochastic version of the finite element method. For considering large differences in the material properties of matrix and inclusions a standard SFEM approach proves not stable and results in high numerical errors compared to a brute-force Monte-Carlo evaluation. Therefore in order to stabilize the SFEM we propose an alternative Gauss integration rule as resulting from a truncation of the probability density function for the random variable. In addition we propose new basis functions substituting the common polynomial chaos expansion, resulting in higher accuracy for the standard deviation in the homogenized stress at the macro scale. Keywords Stochastic FEM Computational homogenization Random geometry

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700