Can the wave function in configuration space be replaced by single-particle wave functions in physical space?
详细信息    查看全文
  • 作者:Travis Norsen ; Damiano Marian ; Xavier Oriols
  • 关键词:Local beables ; Bohmian mechanics ; Conditional wave function ; Physical space ; Configuration space
  • 刊名:Synthese
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:192
  • 期:10
  • 页码:3125-3151
  • 全文大小:1,290 KB
  • 参考文献:Alarcón, A., Yaro, S., Cartoixà, X., & Oriols, X. (2013). Computation of many-particle quantum trajectories with exchange interaction: Application to the simulation of nanoelectronic devices. Journal of Physics: Condensed Matter, 25, 325601.
    Albareda, G., Suñé, J., & Oriols, X. (2009). Many-particle hamiltonian for open systems with full coulomb interaction: Application to classical and quantum time-dependent simulations of nanoscale electron devices. Physical Review B, 79, 075315.CrossRef
    Albareda, G., Lopez, H., Cartoixà, X., Suñé, J., & Oriols, X. (2010). Time-dependent boundary conditions with lead-sample Coulomb correlations: Application to classical and quantum nanoscale electron device simulators. Physical Review B, 82, 085301.CrossRef
    Albareda, G., Marian, D., Benali, A., Yaro, S., Zanghì, N., & Oriols, X. (2013). Time-resolved electron transport with quantum trajectories. Journal of Computational Electronics, 12(3), 405–419.CrossRef
    Albert, D. Z. (1996). Elementary quantum metaphysics. In J. T. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: an appraisal (pp. 277–284). Dordrecht: Kluwer.CrossRef
    Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2013). Predictions and Primitive Ontology in Quantum Foundations: A Study of Examples. British Journal for the Philosophy of Science. doi:10.​1093/​bjps/​axs048 .
    Bacciagaluppi, G., & Valentini, A. (2009). Quantum theory at the crossroads. Cambridge: Cambridge University Press.CrossRef
    Bassi, A., Lochan, K., Satin, S., Singh, T. P., & Ulbricht, H. (2013). Models of wave-function collapse, underlying theories, and experimental tests. Review of Modern Physics, 85, 471–527.CrossRef
    Bell, J. S. (1994). Speakable and unspeakable in quantum mechanics (2nd ed.). Cambridge: Cambridge University Press.
    Bohm, D. (1987). Causality & chance in modern physics. Philadelphia: University of Pennsylvania Press.
    Born, I. (1971). The Born-Einstein Letters. New York: Walker and Company.
    Cohen, I. B. (1999). A guide to Newton’s Principia. In Isaac Newton. The Principia (pp. 60–64 & 277–280), (I. B. Cohen & A. Whitman, Trans.). Berkely, CA: University of California Press.
    Darrigol, O. (2000). Electrodynamics from Ampère to Einstein. Oxford: Oxford University Press.
    Dürr, D., Goldstein, S., & Zanghì, N. (1992). Quantum equilibrium and the origin of absolute uncertainty. Journal of Statistical Physics, 67, 843–907.CrossRef
    Dürr, D., Goldstein, S., & Zanghì, N. (1996). Bohmian mechanics and the meaning of the wave function. In R. S. Cohen, M. Horne, & J. Stachel (Eds.), Experimental metaphysics—quantum mechanical studies in honor of Abner Shimony (Vol. I, pp. 25–38). Dordrecht: Kluwer Academic Publishers.
    Dürr, D., Goldstein, S., & Zanghì, N. (2004). Quantum equilibrium and the role of operators as observables in quantum theory. Journal of Statistical Physics, 116, 959–1055.CrossRef
    Dürr, D., Goldstein, S., Tumulka, R., & Zanghì, N. (2005). On the role of density matrices in Bohmian mechanics. Foundations of Physics, 35, 449–467.CrossRef
    Ghirardi, G. C., Rimini, A., & Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34, 470–491.CrossRef
    Heisenberg, W. (1955). The development of the interpretation of the quantum theory. In W. Pauli, L. Rosenfeld, & V. Weisskopf (Eds.), Niels Bohr and the development of physics (pp. 12–29). New York: McGraw-Hill.
    Heisenberg, W. (1958). Physics and philosophy: the revolution in modern science. New York: Harper.
    Hesse, M. B. (2005). Forces and fields: The concept of action at a distance in the history of physics. Mineola, NY: Dover Publications.
    Holland, P. (1995). The quantum theory of motion. Cambridge: Cambridge University Press.
    Howard, D. (1990). ‘Nicht sein kann was nicht sein darf’, or the prehistory of EPR, 1909–1935: Einstein’s early worries about the quantum mechanics of composite systems. In A. I. Miller (Ed.), Sixty-two years of uncertainty (pp. 61–111). New York: Plenum Press.CrossRef
    Hunt, B. (1994). The Maxwellians. Ithaca, NY: Cornell University Press.
    Janiak, A. (2009). Newton’s philosophy. In E.N. Zalta (Ed.), The stanford encyclopedia of philosophy. Retrieved from http://​plato.​stanford.​edu/​entries/​newton-philosophy . Accessed 28 April 2014.
    Maudlin, T. (2007). Completeness, supervenience and ontology. Journal of Physics A, 40, 3151–3171.CrossRef
    McMullin, E. (1989). The explanation of distant action: historical notes. In J. T. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory (pp. 272–302). Notre Dame, IN: University of Notre Dame Press.
    Mermin, N. D. (2009). What’s bad about this habit. Physics today, 62(5), 8–9.CrossRef
    Norsen, T. (2010). The theory of (exclusively) local beables. Foundations of Physics, 40, 1858–1884.CrossRef
    Oriols, X. (2007). Quantum trajectory approach to time dependent transport in mesoscopic systems with electron–electron interactions. Physical Review Letters, 98, 066803.CrossRef
    Oriols, X., & Mompart, J. (2012). Applied Bohmian mechanics: From nanoscale systems to cosmology. Singapore: Pan Stanford Publishing.
    Pusey, M. F., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state. Nature Physics, 8, 475–478.CrossRef
    Traversa, F. L., Buccafurri, E., Alarcón, A., Albareda, G., Clerc, R., Calmon, F., et al. (2011). Time-dependent many-particle simulation for resonant tunneling diodes: Interpretation of an analytical small-signal equivalent circuit. IEEE Transanction on Electronic Devices, 58, 2104–2112.CrossRef
    von Neumann, J. (1955). Mathematical foundations of quantum mechanics (R. T. Beyer, Trans.). Princeton: Princeton University Press. (Original title: Mathematische Grundlagen der Quantenmechanik, Berlin 1932).
    Wessels, L. (1979). Schrödinger’s route to wave mechanics. Studies in History and Philosophy of Science Part A, 10(4), 311–340.CrossRef
  • 作者单位:Travis Norsen (1)
    Damiano Marian (2)
    Xavier Oriols (3)

    1. Smith College, Northampton, MA, 01060, USA
    2. Dipartimento di Fisica dell’Università di Genova and INFN sezione di Genova, Via Dodecaneso 33, 16146, Genova, Italy
    3. Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
  • 刊物类别:Humanities, Social Sciences and Law
  • 刊物主题:Philosophy
    Philosophy
    Logic
    Epistemology
    Metaphysics
    Philosophy of Language
  • 出版者:Springer Netherlands
  • ISSN:1573-0964
文摘
The ontology of Bohmian mechanics includes both the universal wave function (living in 3N-dimensional configuration space) and particles (living in ordinary 3-dimensional physical space). Proposals for understanding the physical significance of the wave function in this theory have included the idea of regarding it as a physically-real field in its 3N-dimensional space, as well as the idea of regarding it as a law of nature. Here we introduce and explore a third possibility in which the configuration space wave function is simply eliminated—replaced by a set of single-particle pilot-wave fields living in ordinary physical space. Such a re-formulation of the Bohmian pilot-wave theory can exactly reproduce the statistical predictions of ordinary quantum theory. But this comes at the rather high ontological price of introducing an infinite network of interacting potential fields (living in 3-dimensional space) which influence the particles’ motion through the pilot-wave fields. We thus introduce an alternative approach which aims at achieving empirical adequacy (like that enjoyed by GRW type theories) with a more modest ontological complexity, and provide some preliminary evidence for optimism regarding the (once popular but prematurely-abandoned) program of trying to replace the (philosophically puzzling) configuration space wave function with a (totally unproblematic) set of fields in ordinary physical space.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700