Modelling Primary Producer Interaction and Composition: an Example of a UK Lowland River
详细信息    查看全文
  • 作者:Attila N. Lázár ; Andrew J. Wade ; Brian Moss
  • 关键词:Stream ecosystem processes ; Ecological interaction ; Seasonal control ; Process ; based model
  • 刊名:Environmental Modeling & Assessment
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:125-148
  • 全文大小:1,929 KB
  • 参考文献:1.Mainstone, C. P., & Parr, W. (2002). Phosphorus in rivers—ecology and management. Science of the Total Environment, 282–283, 25–47.CrossRef
    2.Neal, C., Martin, E., Neal, M., Hallett, J., Wickham, H. D., Harman, S. A., et al. (2010). Sewage effluent clean-up reduces phosphorus but not phytoplankton in lowland chalk stream (River Kennet, UK) impacted by water mixing from adjacent canal. Science of the Total Environment, 408(22), 5306–5316.CrossRef
    3.Jarvie, H. P., Neal, C., & Withers, P. J. A. (2006). Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus? Science of the Total Environment, 360(1–3), 246–253.CrossRef
    4.Neal, C., Jarvie, H. P., Withers, P. J. A., Whitton, B. A., & Neal, M. (2010). The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments. Science of the Total Environment, 408(7), 1485–1500.CrossRef
    5.Edwards, A. C., & Withers, P. J. A. (2007). Linking phosphorus sources to impacts in different types of water body. Soil Use and Management, 23, 133–143. doi:10.​1111/​j.​1475-2743.​2007.​00110.​x .CrossRef
    6.Bowes, M. J., Gozzard, E., Johnson, A. C., Scarlett, P. M., Roberts, C., Read, D. S., et al. (2012). Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: are phosphorus concentrations beginning to limit phytoplankton biomass? Science of the Total Environment, 426, 45–55. doi:10.​1016/​j.​scitotenv.​2012.​02.​056 .CrossRef
    7.Dodds, W. K., & Whiles, M. (2010). Freshwater ecology. Concepts and environmental applications of limnology. 2nd Edition: Elsevier.
    8.Kalff, J. (2001). Limnology inland water. 2nd Edition: Addison-Wesley.
    9.Asaeda, T., Trung, V. K., Manatunge, J., & Van Bon, T. (2001). Modelling macrophyte-nutrient-phytoplankton interactions in shallow eutrophic lakes and the evaluation of environmental impacts. Ecological Engineering, 16(3), 341–357.CrossRef
    10.Duarte, C., & Roff, D. (1991). Architectural and life history constraints to submersed macrophyte community structure: a simulation study. Aquatic Botany, 42(1), 15–29.CrossRef
    11.Jones, F. H. (1984). The dynamics of suspended algal populations in the lower Wye catchment. Water Research, 18(1), 25–35.CrossRef
    12.McKee, D., Hatton, K., Eaton, J. W., Atkinson, D., Atherton, A., Harvey, I., et al. (2002). Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquatic Botany, 74(1), 71–83.CrossRef
    13.Mooij, W., Trolle, D., Jeppesen, E., Arhonditsis, G., Belolipetsky, P., Chitamwebwa, D., et al. (2010). Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquatic Ecology, 44(3), 633–667. doi:10.​1007/​s10452-010-9339-3 .CrossRef
    14.OECD (1982). Eutrophication of waters: monitoring, assessment and control. OECD Cooperative Programme on Monitoring of Inland Waters (Eutrophication Control) (pp. 154 p). Paris: Environment Directorate, Organisation for Economic Cooperation and Development (OECD).
    15.Reynolds, C. S., Irish, A. E., & Elliott, J. A. (2001). The ecological basis for simulating phytoplankton responses to environmental change (PROTECH). Ecological Modelling, 140, 271–291.CrossRef
    16.Hilton, J., O’Hare, M., Bowes, M. J., & Jones, J. I. (2006). How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment, 365(1–3), 66–83.CrossRef
    17.Ibanez, C., Alcaraz, C., Caiola, N., Rovira, A., Trobajo, R., Alonso, M., et al. (2012). Regime shift from phytoplankton to macrophyte dominance in a large river: top-down versus bottom-up effects. Science of the Total Environment, 416, 314–322.CrossRef
    18.Marques, J. C., Nielsen, S. N., Pardal, M. A., & Jørgensen, S. E. (2003). Impact of eutrophication and river management within a framework of ecosystem theories. Ecological Modelling, 166(1–2), 147–168. doi:10.​1016/​s0304-3800(03)00134-0 .CrossRef
    19.Ham, S. F., Wright, J. F., & Berrie, A. D. (1981). Growth and recession of aquatic macrophytes on an unshaded section of the River Lambourn, England, from 1971 to 1976. Freshwater Biology, 11, 381–390.CrossRef
    20.Jarvie, H. P., Neal, C., & Williams, R. J. (2004). Assessing changes in phosphorus concentrations in relation to in-stream plant ecology in lowland permeable catchments: bringing ecosystem functioning into water quality monitoring. Water, Air, & Soil Pollution: Focus, 4(2), 641–655.CrossRef
    21.Rosset, V., Lehmann, A., & Oertli, B. (2010). Warmer and richer? Predicting the impact of climate warming on species richness in small temperate waterbodies. Global Change Biology, 16(8), 2376–2387. doi:10.​1111/​j.​1365-2486.​2010.​02206.​x .CrossRef
    22.Yvon-Durocher, G., Montoya, J. M., Trimmer, M., & Woodward, G. U. Y. (2011). Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology, 17(4), 1681–1694. doi:10.​1111/​j.​1365-2486.​2010.​02321.​x .CrossRef
    23.Chapra, S. C., Pelletier, G. J., & Tao, H. (2007). QUAL2K: a modeling framework for simulating river and stream water quality, version 2.07: documentation and users manual. Medford: Civil and Environmental Engineering Dept., Tufts University.
    24.Kowe, R., Skidmore, R. E., Whitton, B. A., & Pinder, A. C. (1998). Modelling phytoplankton dynamics in the River Swale, an upland river in NE England. Science of the Total Environment, 210–211, 535–546.CrossRef
    25.Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2005). Soil and water assessment tool theoretical documentation—version 2005. (pp. 494 p.) Temple.
    26.Robson, B. J., & Webster, I. T. (2006). Representing the effects of subgrid-scale variations in bathymetry on light and primary production. Environmental Modelling & Software, 21(6), 802–811. doi:10.​1016/​j.​envsoft.​2005.​02.​007 .CrossRef
    27.Schöl, A., Kirchesch, V., Bergfeld, T., & Müller, D. (1999). Model-based analysis of oxygen budget and biological processes in the regulated rivers Moselle and Saar: modelling the influence of benthic filter feeders on phytoplankton. Hydrobiologia, 410, 167–176.CrossRef
    28.Wade, A. J., Hornberger, G. M., Whitehead, P. G., Jarvie, H. P., & Flynn, N. J. (2001). On modeling the mechanisms that control in-stream phosphorus, macrophyte, and epiphyte dynamics: an assessment of a new model using general sensitivity analysis. Water Resources Research, 37(11), 2777–2792.CrossRef
    29.Bartell, S. M., Lefebvre, G., Kaminski, G., Carreau, M., & Campbell, K. R. (1999). An ecosystem model for assessing ecological risks in Québec rivers, lakes, and reservoirs. Ecological Modelling, 124(1), 43–67.CrossRef
    30.Park, R. A., Clough, J. S., & Wellman, M. C. (2008). AQUATOX: modeling environmental fate and ecological effects in aquatic ecosystems. Ecological Modelling, 213(1), 1–15.CrossRef
    31.Sourisseau, S., Basseres, A., Perie, F., & Caquet, T. (2008). Calibration, validation and sensitivity analysis of an ecosystem model applied to artificial streams. Water Research, 42(4–5), 1167–1181.CrossRef
    32.Lázár, A. N. (2010). Modelling fixed plant and algal dynamics in rivers. PhD thesis. University of Reading.
    33.Wharton, G., Cotton, J. A., Wotton, R. S., Bass, J. A. B., Heppell, C. M., Trimmer, M., et al. (2006). Macrophytes and suspension-feeding invertebrates modify flows and fine sediments in the Frome and Piddle catchments, Dorset (UK). Journal of Hydrology, 330(1–2), 171–184.CrossRef
    34.Marsh, T. J., & Hannaford, J. (2008). UK hydrometric register. Hydrological data UK series (pp. 210p.) Centre for Ecology & Hydrology.
    35.Sanders, I. A. (2006). The source, transformation and fate of particulate organic matter in stands of the aquatic macrophyte Ranunculus spp. PhD thesis. Queen Mary University of London.
    36.Wheater, H. S., Peach, D., & Binley, A. (2007). Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR) hydrology and earth system sciences discussions. Copernicus Publications, 11(1), 108–124.
    37.Smith, R. A., Alexander, R. B., & Schwarz, G. E. (2003). Natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environmental Science & Technology, 37(14), 3039–3047. doi:10.​1021/​es020663b .CrossRef
    38.Bowes, M. J., Leach, D. V., & House, W. A. (2005). Seasonal nutrient dynamics in a chalk stream: the River Frome, Dorset, UK. Science of the Total Environment, 336(1–3), 225–241.CrossRef
    39.Whitehead, P. G., & Hornberger, G. M. (1984). Modelling algal behaviour in the River Thames. Water Resources, 18(8), 945–953.
    40.Broughton, N. M., & Jones, N. V. (1978). An investigation into the growth of 0-group roach, (Rutilus rutilus L.) with special reference to temperature. Journal of Fish Biology, 12(4), 345–357.CrossRef
    41.Thorp, J. H., & Delong, M. D. (1994). The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos, 70(2), 305–308.CrossRef
    42.Roberts, S. (2007). The transport of sediment-associated contaminants through lowland permeable catchments. PhD thesis. Queen Mary University of London.
    43.Sand-Jensen, K., & Pedersen, O. (1999). Velocity gradients and turbulence around macrophyte stands in streams. Freshwater Biology, 42(2), 315–328.CrossRef
    44.Trimmer, M., Sanders, I. A., & Heppell, C. M. (2009). Carbon and nitrogen cycling in a vegetated lowland chalk river impacted by sediment. Hydrological Processes, 23, 2225–2238.CrossRef
    45.Jorgensen, S. E., Nielsen, S. N., & Jorgensen, L. A. (1991). Handbook of ecological parameters and ecotoxicology: Elsevier Science.
    46.Jackson-Blake, L. A., Dunn, S. M., Helliwell, R. C., Skeffington, R. A., Stutter, M. I., & Wade, A. J. (2015). How well can we model stream phosphorus concentrations in agricultural catchments? Environmental Modelling & Software, 64, 31–46. doi:10.​1016/​j.​envsoft.​2014.​11.​002 .CrossRef
    47.Spear, R. C., & Hornberger, G. M. (1980). Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis. Water Research, 14(1), 42–49.CrossRef
    48.Franklin, P., Dunbar, M., & Whitehead, P. (2008). Flow controls on lowland river macrophytes: a review. Science of the Total Environment, 400(1–3), 369–378.CrossRef
    49.Sand-Jensen, K., Borg, D., & Jeppesen, E. (1989). Biomass and oxygen dynamics of the epiphyte community in a Danish lowland stream. Freshwater Biology, 22(3), 431–443.CrossRef
    50.CAMARGO, A. F. M., & FLORENTINO, E. R. (2000). Population dynamics and net primary production of the aquatic macrophite Nymphaea rudgeana C. F. Mey in a lotic environment of the Itanhaém River basin (SP, Brazil). Revista Brasileira de Biologia, 60, 83–92.CrossRef
    51.Velasco, J., Millan, A., Vidal-Abarca, M. R., Suarez, M. L., Guerrero, C., & Ortega, M. (2003). Macrophytic, epipelic and epilithic primary production in a semiarid Mediterranean stream. Freshwater Biology, 48(8), 1408–1420. doi:10.​1046/​j.​1365-2427.​2003.​01099.​x .CrossRef
    52.Dawson, F. H. (1976). The annual production of the aquatic macrophyte Ranunculus penicillatus var. calcareus (RW Butcher) C.D.K. COOK. Aquatic Botany, 2, 51–73.CrossRef
    53.Franklin, P. (2007). Dynamic analysis and modelling of hydroecology in two chalk streams (PhD thesis). University of Reading, Reading.
    54.O’Hare, M. T., Clarke, R. T., Bowes, M. J., Cailes, C., Henville, P., Bissett, N., et al. (2010). Eutrophication impacts on a river macrophyte. Aquatic Botany, 92(3), 173–178. doi:10.​1016/​j.​aquabot.​2009.​11.​001 .CrossRef
    55.Bowes, M. J., Ings, N. L., McCall, S. J., Warwick, A., Barrett, C., Wickham, H. D., et al. (2012). Nutrient and light limitation of periphyton in the River Thames: implications for catchment management. Science of the Total Environment. doi:10.​1016/​j.​scitotenv.​2011.​09.​082 .
    56.Bowes, M. J., Lehmann, K., Jarvie, H., & Singer, A. C. (2010). Investigating periphyton response to changing phosphorus concentrations in UK rivers using within-river flumes. Paper presented at the BHS Third International Symposium, Managing Consequences of a Changing Global Environment, Newcastle.
    57.Bowes, M. J., Smith, J. T., Hilton, J., Sturt, M. M., & Armitage, P. D. (2007). Periphyton biomass response to changing phosphorus concentrations in a nutrient-impacted river: a new methodology for phosphorus target setting. Canadian Journal of Fisheries and Aquatic Sciences, 64(2), 227–238.CrossRef
    58.Shaw, P. J. A. (2003). Multivariate statistics for the environmental sciences: Arnold.
    59.Whitehead, P. G., Wilson, E. J., & Butterfield, D. (1998). A semi-distributed integrated nitrogen model for multiple source assessment in catchments (INCA): part I—model structure and process equations [nitrogen modelling]. Science of the Total Environment, 210(211), 547–558.CrossRef
    60.Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkopf, J. R., Rupp, G. L., et al. (1985). Rates, constants, and kinetics formulations in surface water quality modeling (second edition). Report number EPA/600/3-85/040. (pp. 454p.). Athens: Environmental Research Laboratory, U.S. Environmental Protection Agency.
    61.Hall, R. O., Wallace, J. B., & Eggert, S. L. (2000). Organic matter flow in stream food webs with reduced detrital resource base. Ecology, 81(12), 3445–3463. doi:10.​1890/​0012-9658(2000)081[3445:​OMFISF]2.​0.​CO;2 .CrossRef
    62.Bunn, S. E., Davies, P. M., & Winning, M. (2003). Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology, 48(4), 619–635. doi:10.​1046/​j.​1365-2427.​2003.​01031.​x .CrossRef
    63.Jarritt, N. P., & Lawrence, D. S. L. (2007). Fine sediment delivery and transfer in lowland catchments: modelling suspended sediment concentrations in response to hydrological forcing. Hydrological Processes, 21(20), 2729–2744.CrossRef
    64.Michaelis, L., & Menten, M. (1913). Die Kinetik der Invertinwirkung. Biochemistry Zeitung, 49, 333–369.
    65.Dawson, F. H. (1980). Flowering of Ranunculus penicillatus (Dum.) Bab. var. calcareus (R.W. Butcher) C. D. K. Cook in the River Piddle (Dorset, England). Aquatic Botany, 9, 145–157.CrossRef
    66.Rodwell, J. S. (1995). British plant communities volume 4—aquatic communities, swamps and tall-herb fens. Cambridge University Press.
    67.Haslam, S. M. (1978). River plants: the marophytic vegetation of watercourses. Cambridge: Cambridge University Press.
    68.Riis, T., & Biggs, B. J. F. (2003). Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography, 48(4), 1488–1497.CrossRef
    69.Heppell, C. M., Wharton, G., Cotton, J. A. C., Bass, J. A. B., & Roberts, S. E. (2009). Sediment storage in the shallow hyporheic of lowland vegetated river reaches. Hydrological Processes, 23(15), 2239–2251.CrossRef
    70.Riber, H. H., Sorensen, J. P., & Schierup, H.-H. (1984). Primary productivity and biomass of epiphytes on Phragmites australis in a eutrophic Danish Lake. Holarctic Ecology, 7(2), 202–210.
    71.Zimba, P. V., & Hopson, M. S. (1997). Quantification of epiphyte removal efficiency from submersed aquatic plants. Aquatic Botany, 58(2), 173–179.CrossRef
    72.Allan, J. D. (1995). Stream ecology: structure and function of running water. London: Chapman & Hall.CrossRef
    73.Stevenson, R. J. (1996). The stimulation and drag of current. In R. J. Stevenson, Bothwell, M. L., Lowe, R. L. (Ed.), Algal ecology—freshwater benthic ecosystems (pp. 321–340, Aquatic Ecology Series). San Diego: Academic Press.
    74.Walton, S. P., Welch, E. B., & Horner, R. R. (1995). Stream periphyton response to grazing and changes in phosphorus concentration. Hydrobiologia, 302, 31–46.CrossRef
    75.Griffin, S. L., Herzfeld, M., & Hamilton, D. P. (2001). Modelling the impact of zooplankton grazing on phytoplankton biomass during a dinoflagellate bloom in the Swan River Estuary, Western Australia. Ecological Engineering, 16(3), 373–394.CrossRef
    76.Fovet, O., Belaud, G., Litrico, X., Charpentier, S., Bertrand, C., Dauta, A., et al. (2010). Modelling periphyton in irrigation canals. Ecological Modelling, 221(8), 1153–1161.CrossRef
    77.Reynolds, C. S. (1984). The ecology of freshwater phytoplankton. Cambridge: Cambridge University Press (pp. 384 p).
    78.Collins, C. D., & Wlosinski, J. H. (1983). Coefficients for use in the U.S. Army Corps of Engineers Reservoir Model, CE-QUAL-R1. Technical report E-83-15. (pp. 120 pp.). Vicksburg, Mississippi, USA: U.S. Army Engineer Waterways Experiment Station.
    79.Schöl, A., Kirchesch, V., Bergfeld, T., Schöll, F., Borcherding, J., & Müller, D. (2002). Modelling the chlorophyll content of the River Rhine—interaction between riverine algal production and population biomass of grazers, rotifers and zebra mussel, Dreissena polymorpha. International Review of Hydrobiology, 87(2–3), 295–317.CrossRef
    80.Talling, J. F. (1957). Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytologist, 56(1), 29–50.CrossRef
    81.Bissinger, J. E., Montagnes, D. J. S., Sharples, J., & Atkinson, D. (2008). Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnology and Oceanography, 53(2), 487–493.CrossRef
    82.Jones, R. I. (1977). Factors controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh): II. Phytoplankton production and its chief determinants. Journal of Ecology, 65(2), 561–577.CrossRef
    83.Megard, R. O. (1972). Phytoplankton, photosynthesis, and phosphorus in Lake Minnetonka, Minnesota. Limnology and Oceanography, 17(1), 68–87.CrossRef
    84.Sullivan, A. B., Rounds, S. A., Sobieszczyk, S., & Bragg, H. M. (2007). Modeling hydrodynamics, water temperature, and suspended sediment in Detroit Lake, Oregon. (pp. 52 p.): Scientific Investigations Report 2007–5008, U.S. Geological Survey.
    85.Reddy, K. R., & DeBusk, W. F. (1985). Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: II. Azolla, Duckweed, and Salvinia. Economic Botany, 39(2), 200–208.CrossRef
    86.Adams, M. S., Titus, J. E., & McCracken, M. (1974). Depth distribution of photosynthetic activity in a Myriophyllum spicatum community in Lake Wingra. Limnology and Oceanography, 19(3), 377–389.CrossRef
    87.Van, T. K., Haller, W. T., & Bowes, G. (1976). Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiology, 58(6), 761–768. doi:10.​1104/​pp.​ 58.​6.​761 .CrossRef
    88.Wright, R. M., & McDonnell, A. J. (1986). Macrophyte growth in shallow streams: field investigations. Journal of Environmental Engineering, 112(5), 953–966.CrossRef
    89.Best, E. P. H., Buzzelli, C. P., Bartell, S. M., Wetzel, R. L., Boyd, W. A., Doyle, R. D., et al. (2001). Modeling submersed macrophyte growth in relation to underwater light climate: modeling approaches and application potential. Hydrobiologia, 444(1), 43–70.CrossRef
    90.DeAngelis, D. L., Bartell, S. M., & Brenkert, A. L. (1989). Effects of nutrient recycling and food-chain length on resilience. The American Naturalist, 134(5), 778–805.CrossRef
    91.Newman, R. M. (1991). Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society, 10(2), 89–114.CrossRef
    92.Asaeda, T., & Van Bon, T. (1997). Modelling the effects of macrophytes on algal blooming in euthrophic shallow lakes. Ecological Modelling, 104, 261–287.CrossRef
    93.DeNicola, D. M. (1996). Periphyton responses to temperature at different ecological levels. In R. J. Stevenson, Bothwell, M. L., Lowe, R. L. (Ed.), Algal ecology—freshwater benthic ecosystems (pp. 149–181, Aquatic Ecology Series). San Diego: Academic Press.
    94.Flynn, N. J., Snook, D. L., Wade, A. J., & Jarvie, H. P. (2002). Macrophyte and periphyton dynamics in a UK Cretaceous chalk stream: the River Kennet, a tributary of the Thames. Science of the Total Environment, 282, 143–157.CrossRef
    95.Quinlan, E. L., Phlips, E. J., Donnelly, K. A., Jett, C. H., Sleszynski, P., & Keller, S. (2008). Primary producers and nutrient loading in Silver Springs, FL, USA. Aquatic Botany, 88(3), 247–255.CrossRef
    96.Vis, C., Hudon, C., & Carignan, R. (2006). Influence of the vertical structure of macrophyte stands on epiphyte community metabolism. Canadian Journal of Fisheries and Aquatic Sciences, 63, 1014–1026, doi:10.​1139/​F06-021 .
    97.Marker, A. F. H. (1976). The benthic algae of some streams in Southern England: I. Biomass of the epilithon in some small streams. The Journal of Ecology, 64(1), 343–358.CrossRef
    98.Ambrose, R. B., Martin, J. L., & Wool, T. A. (2006). WASP7 benthic algae—model theory and user’s guide. Washington: U.S. Environmental Protection Agency (pp. 32 p.).
    99.Cerco, C. F., & Seitzinger, S. P. (1997). Measured and modeled effects of benthic algae on eutrophication in Indian River-Rehoboth Bay, Delaware. Estuaries, 20(1), 231–248.CrossRef
    100.Sabater, S., Artigas, J., Durán, C., Pardos, M., Romaní, A. M., Tornés, E., et al. (2008). Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River). Science of the Total Environment, 404(1), 196–206.CrossRef
    101.Traas, T., Janse, J., Aldenberg, T., & Brock, T. (1998). A food web model for fate and direct and indirect effects of Dursban® 4E (active ingredient chlorpyrifos) in freshwater microcosms. Aquatic Ecology, 32(2), 179–190.CrossRef
    102.Odum, H. T. (1957). Trophic structure and productivity of Silver Springs, Florida. Ecological Monographs, 27(1), 55–112.CrossRef
    103.Atlas, D., & Bannister, T. T. (1980). Dependence of mean spectral extinction coefficient of phytoplankton on depth, water color, and species. Limnology and Oceanography, 25(1), 157–159.CrossRef
    104.Titus, J. E., & Adams, M. S. (1979). Coexistence and the comparative light relations of the submersed macrophytes Myriophyllum spicatum L. and Vallisneria americana Michx. Oecologia, 40(3), 273–286.CrossRef
    105.Sand-Jensen, K., Jeppesen, E., Nielsen, K., Van Der Bijl, L., Hjermind, L., Wiggers Nielsen, L., et al. (1989). Growth of macrophytes and ecosystem consequences in a lowland Danish stream. Freshwater Biology, 22, 15–32.CrossRef
    106.Frankovich, T. A., & Zieman, J. C. (2005). Periphyton light transmission relationships in Florida Bay and the Florida Keys, USA. Aquatic Botany, 83(1), 14–30.CrossRef
  • 作者单位:Attila N. Lázár (1) (3)
    Andrew J. Wade (1)
    Brian Moss (2)

    1. School of Archaeology, Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
    3. Civil, Maritime and Environmental Engineering and Science Unit, Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
    2. School of Environmental Sciences, University of Liverpool, Liverpool, L69 3BX, UK
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Mathematical Modeling and IndustrialMathematics
    Applications of Mathematics
  • 出版者:Springer Netherlands
  • ISSN:1573-2967
文摘
Nutrient enrichment and drought conditions are major threats to lowland rivers causing ecosystem degradation and composition changes in plant communities. The controls on primary producer composition in chalk rivers are investigated using a new model and existing data from the River Frome (UK) to explore abiotic and biotic interactions. The growth and interaction of four primary producer functional groups (suspended algae, macrophytes, epiphytes, sediment biofilm) were successfully linked with flow, nutrients (N, P), light and water temperature such that the modelled biomass dynamics of the four groups matched that of the observed. Simulated growth of suspended algae was limited mainly by the residence time of the river rather than in-stream phosphorus concentrations. The simulated growth of the fixed vegetation (macrophytes, epiphytes, sediment biofilm) was overwhelmingly controlled by incoming solar radiation and light attenuation in the water column. Nutrients and grazing have little control when compared to the other physical controls in the simulations. A number of environmental threshold values were identified in the model simulations for the different producer types. The simulation results highlighted the importance of the pelagic–benthic interactions within the River Frome and indicated that process interaction defined the behaviour of the primary producers, rather than a single, dominant driver. The model simulations pose interesting questions to be considered in the next iteration of field- and laboratory-based studies. Keywords Stream ecosystem processes Ecological interaction Seasonal control Process-based model

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700