Micro- and nano-textural evidence of Ti(–Ca–Fe) mobility during fluid–rock interactions in carbonaceous lawsonite-bearing rocks from New Zealand
详细信息    查看全文
  • 作者:Matthieu E. Galvez (12) matthieu.galvez@gmail.com
    Olivier Beyssac (1)
    Karim Benzerara (1)
    Nicolas Menguy (1)
    Sylvain Bernard (3)
    Simon C. Cox (4)
  • 关键词:Metamorphism – Fluid–rock interaction – Fossilization – Carbonaceous material – TiO2 – Ti mobility – Mineral nanoparticles – Lawsonite
  • 刊名:Contributions to Mineralogy and Petrology
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:164
  • 期:5
  • 页码:895-914
  • 全文大小:2.5 MB
  • 参考文献:1. Aagaard P, Egeberg PK, Saigal GC, Morad S, Bjorlykke K (1990) Diagenetic albitization of detrital K-feldspars in Jurassic, lower cretaceous and tertiary clastic reservoir rocks from offshore Norway; II, formation water chemistry and kinetic considerations. J Sediment Res 60(4):575–581
    2. Akahane H, Furuno T, Miyajima H, Yoshikawa T, Yamamoto S (2004) Rapid wood silicification in hot spring water: an explanation of silicification of wood during the Earth’s history. Sediment Geol 169(3–4):219–228
    3. Aldahan AA, Morad S (1988) Some remarks on the stability of sphene in diagenetic environments. Chem Geol 70(3):249–255
    4. Anderson EP, Schiffbauer JD, Xiao S (2011) Taphonomic study of Ediacaran organic-walled fossils confirms the importance of clay minerals and pyrite in Burgess Shale-type preservation. Geology 39(7):643–646
    5. Arslan M, Kadir S, Abdioglu E, Kolayli H (2006) Origin and formation of kaolin minerals in saprolite of tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey. Clay Miner 41(2):597–617
    6. Banfield JF, Veblen D (1991) The structure and origin of Fe-bearing platelets in metamorphic rutile. Am Mineral 73:113–127
    7. Banfield JF, Bischoff BL, Anderson MA (1993) TiO2 accessory minerals: coarsening, and transformation kinetics in pure and doped synthetic nanocrystalline materials. Chem Geol 110(1–3):211–231
    8. Benzerara K, Menguy N, Banerjee NR, Tyliszczak T, Brown GE Jr, Guyot F (2007) Alteration of submarine basaltic glass from the Ontong Java Plateau: a STXM and TEM study. Earth Planet Sci Lett 260(1–2):187–200
    9. Bernard S, Benzerara K, Beyssac O, Menguy N, Guyot F, Brown GE Jr, Goffé B (2007) Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. Earth Planet Sci Lett 262(1–2):257–272
    10. Bernard S, Benzerara K, Beyssac O, Brown GE Jr (2010) Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks. Geochim Cosmochim Acta 74(17):5054–5068
    11. Beyssac O, Goffé B, Chopin C, Rouzaud J-N (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metamorph Geol 20(9):859–871
    12. Bird DK, Helgeson HC (1981) Chemical interaction of aqueous solutions with epidote-feldspar mineral assemblages in geologic systems; II, equilibrium constraints in metamorphic/geothermal processes. Am J Sci 281(5):576–614
    13. Boles JR, Coombs DS (1977) Zeolite facies alteration of sandstones in the Southland Syncline, New Zealand. Am J Sci 277(8):982–1012
    14. Bradshaw JD (1993) A review of the median tectonic zone: terrane boundaries and terrane amalgamation near the median tectonic zone. New Zeal J Geol Geop 36:117–125
    15. Braun J–J, Ngoupayou JRN, Viers J, Dupre B, Bedimo Bedimo J-P, Boeglin J-L, Robain H, Nyeck B, Freydier R, Nkamdjou LS, Rouiller J, Muller J-P (2005) Present weathering rates in a humid tropical watershed: Nsimi, South Cameroon. Geochim Cosmochim Acta 69(2):357–387
    16. Channing A, Edwards D (2003) Experimental taphonomy: silicification of plants in Yellowstone hot-spring environments. Earth Env Sci Trans R Soc 94(04):503–521
    17. Claeys PF, Mount JF (1991) Diagenetic origin of carbonate, sulfide and oxide inclusions in biotites of the Great Valley Group (Cretaceous), Sacramento Valley, California. J Sediment Res 61(5):719–731
    18. Connolly JAD (1990) Multivariable phase diagrams; an algorithm based on generalized thermodynamics. Am J Sci 290(6):666–718
    19. Connolly JAD (1995) Phase diagram methods for graphitic rocks and application to the system C–O–H–FeO–TiO2–SiO2. Contrib Mineral Petrol 119(1):94–116
    20. Connolly JAD, Cesare B (1993) C–O–H–S fluid composition and oxygen fugacity in graphitic metapelites. J Metamorph Geol 11(3):379–388
    21. Coombs DS (1954) The nature and alteration of some Triassic sediments from Southland, New Zealand. T Roy Soc New Zeal 82:65–109
    22. Cornu S, Lucas Y, Lebon E, Ambrosi JP, Luiz?o F, Rouiller J, Bonnay M, Neal C (1999) Evidence of titanium mobility in soil profiles, Manaus, central Amazonia. Geoderma 91(3–4):281–295
    23. Craw D (2002) Geochemistry of late metamorphic hydrothermal alteration and graphitisation of host rock, Macraes gold mine, Otago Schist, New Zealand. Chem Geol 191(4):257–275
    24. Dillon M, Franke C (2009) Diagenetic alteration of natural Fe-Ti oxides identified by energy dispersive spectroscopy and low-temperature magnetic remanence and hysteresis measurements. Phys Earth Planet In 172(3–4):141–156
    25. Disnar JR, Sureau JF (1990) Organic matter in ore genesis: progress and perspectives. Org Geochem 16(1–3):577–599
    26. Disnar JR, Trichet J (1983) Pyrolyse de complexes organo-métalliques formés entre un matériau organique actuel d’origine algaire et divers cations métalliques divalents (UO2 2+, Cu2+, Pb2+, Ni2+, Mn2+, Zn2+ et CO2+. Chem Geol 40:203–223
    27. Dupré B, Viers J, Dandurand J-L, Polve M, Bénézeth P, Vervier P, Braun J–J (1999) Major and trace elements associated with colloids in organic-rich river waters: ultrafiltration of natural and spiked solutions. Chem Geol 160:63–80
    28. Eggleton RA, Banfield JF (1985) The alteration of granitic biotite to chlorite. Am Mineral 70(9–10):902–910
    29. Ermolaeva V, Chukanov N, Pekov I, Kogarko L (2009) The geochemical and genetic role of organic substances in postmagmatic derivatives of alkaline plutons. Geol Ore Deposit 51(7):513–524
    30. Fitzpatrick RW (1978) Amorphous and crystalline titanium and iron-titanium oxides in synthetic preparations, at near ambient conditions, and in soil clays. Clay Clay Miner 26(3):189–208
    31. Frey M, Capitani CD, Liou JG (1991) A new petrogenetic grid for low-grade metabasites. J Metamorph Geol 9(4):497–509
    32. Fyfe WS, Zardini R (1967) Metaconglomerate in the Franciscan formation near Pacheco Pass, California. Am J Sci 265(9):819–830
    33. Galvez ME, Beyssac O, Benzerara K, Bernard S, Menguy N, Cox SC, Martinez I, Johnston MR, Brown GE (2012) Morphological preservation of carbonaceous plant fossils in blueschist metamorphic rocks from New Zealand. Geobiology 10(2):118–129
    34. Glamoclija M, Steele A, Fries M, Schieber J, Voytek MA, Cockell CS (2009) Association of anatase (TiO2) and microbes: unusual fossilization effect or a potential biosignature? Geol Soc Am S 458:965–975
    35. Glassley WE, Whetten JT, Cowan DS, Vance JA (1976) Significance of coexisting lawsonite, prehnite, and aragonite in the San Juan Islands, Washington. Geology 4(5):301–302
    36. Gold PB (1987) Textures and geochemistry of authigenic albite from Miocene sandstones, Louisiana Gulf Coast. J Sediment Res 57(2):353–362
    37. Hansen E, Reimink J, Harlov D (2010) Titaniferous accessory minerals in very low-grade metamorphic rocks, Keweenaw Peninsula Michigan, USA. Lithos 116(1–2):167–174
    38. Hausrath EM, Neaman A, Brantley SL (2009) Elemental release rates from dissolving basalt and granite with and without organic ligands. Am J Sci 309(8):633–660
    39. Heaney PJ, Vicenzi EP, Giannuzzi LA, Livi KJT (2001) Focused ion beam milling: a method of site-specific sample extraction for microanalysis of Earth and planetary materials. Am Mineral 86(9):1094–1099
    40. Hesse R (1989) Silica diagenesis: origin of inorganic and replacement cherts. Earth-Sci Rev 26:253–284
    41. Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319(5870):1631–1635
    42. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16(3):309–343
    43. H?velmann J, Putnis A, Geisler T, Schmidt B, Golla-Schindler U (2010) The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib Mineral Petrol 159(1):43–59
    44. Huggins FE, Huffman GP (2004) How do lithophile elements occur in organic association in bituminous coals? Int J Coal Geol 58(3):193–204
    45. Iijima A, Matsumoto R (1982) Berthierine and chamosite in coal measures of Japan. Clay Clay Miner 30(4):264–274
    46. Jefferson TH (1987) The preservation of confier wood: examples from the lower cretaceous of antarctica. Paleontology 30:233–249
    47. Johnston MR (1979) Geology of the Nelson area (1:25 000). Department of scientific and industrial research, Wellington, NZ, p Map (1 sheet) and note, p 52
    48. Johnston MR, Raine JI, Watters WA (1987) Drumduan Group of East Nelson, New Zealand: plant-bearing Jurassic arc rocks metamorphosed during terrane interaction. J R Soc N Z 17(3):275–301
    49. Kantorowicz JD (1985) The petrology and diagenesis of Middle Jurassic clastic sediments, Ravenscar Group, Yorkshire. Sedimentology 32(6):833–853
    50. Knauss KG, Dibley MJ, Bourcier WL, Shaw HF (2001) Ti(IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300 °C. Appl Geochem 16(9–10):1115–1128
    51. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68(1–2):277–279
    52. Kretzschmar R, Schafer T (2005) Metal retention and transport on colloidal particles in the environment. Elements 1(4):205–210
    53. Kretzschmar R, Robarge WP, Amoozegar A, Vepraskas MJ (1997) Biotite alteration to halloysite and kaolinite in soil-saprolite profiles developed from mica schist and granite gneiss. Geoderma 75(3–4):155–170
    54. Lepot K, Benzerara K, Philippot P (2011) Biogenic versus metamorphic origins of diverse microtubes in 2.7Gyr old volcanic ashes: multi-scale investigations. Earth Planet Sci Lett 312(12):37–47
    55. Liou JG (1970) Synthesis and stability relations of wairakite, CaAl2Si4O12·2H2O. Contrib Mineral Petrol 27(4):259–282
    56. Liou JG (1971) P-T stabilities of laumontite, wairakite, lawsonite, and related minerals in the system CaAl2Si2O8–SiO2–H2O. J Petrol 12(2):379–411
    57. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18(4):259–341
    58. Malengreau N, Muller J-P, Calas G (1995) Spectroscopic approach for investigating the status and mobility of Ti in kaolinitic materials. Clay Clay Miner 43(5):615–621
    59. Marantos I, Markopoulos T, Christidis GE (2007) Zeolitic alteration in the tertiary Feres volcano-sedimentary basin, Thrace, NE Greece. Mineral Mag 71(3):327–345
    60. Matthews A (1976) The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions. Am Mineral 61(5–6):419–424
    61. Meinhold G (2010) Rutile and its applications in earth sciences. Earth-Sci Rev 102(1–2):1–28
    62. Mizutani M, Takase H, Adachi N, Ota T, Daimon K, Hikichi Y (2005) Porous ceramics prepared by mimicking silicified wood. Sci Technol Adv Mat 6(1):76–83
    63. Mohammad YO, Maekawa H (2008) Origin of titanite in metarodingite from the Zagros Thrust Zone, Iraq. Am Mineral 93(7):1133–1141
    64. Moinereau J (1977) Altération des matériaux basaltiques et genèse des argiles en climat tempéré humide et milieu organique. Cah ORSTOM 15:157–173
    65. Moody JB, Jenkins JE, Meyer D (1985) An experimental investigation of the albitization of plagioclase. Can Mineral 23(4):583–596
    66. Morad S (1988) Diagenesis of titaniferous minerals in Jurassic sandstones from the Norwegian Sea. Sediment Geol 57(1–2):17–40
    67. Morad S, Adin Aldahan ALA (1986) Alteration of detrital Fe-Ti oxides in sedimentary rocks. Geol Soc Am Bull 97(5):567–578
    68. Morad S, Ketzer JM, De Ros LF (2000) Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology 47:95–120
    69. Mortimer N (2004) New Zealand’s geological foundations. Gondwana Res 7(1):261–272
    70. Mortimer N, Gans P, Calvert A, Walker N (1999) Geology and thermochronometry of the east edge of the Median Batholith (Median Tectonic Zone): a new perspective on Permian to Cretaceous crustal growth of New Zealand. Isl Arc 8(3):404–425
    71. Mücke A, Bhadra Chaudhuri JN (1991) The continuous alteration of ilmenite through pseudorutile to leucoxene. Ore Geol Rev 6(1):25–44
    72. Munz IA, Wayne D, Austrheim H (1994) Retrograde fluid infiltration in the high-grade modum complex South Norway: evidence for age, source and REE mobility. Contrib Mineral Petrol 116(1):32–46
    73. Naicker PK, Cummings PT, Zhang H, Banfield JF (2005) Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J Phys Chem B 109(32):15243–15249
    74. Newton RC (2011) The three partners of metamorphic petrology. Am Mineral 96:457–469
    75. Nissenbaum A, Swaine DJ (1976) Organic matter-metal interactions in recent sediments: the role of humic substances. Geochim Cosmochim Acta 40(7):809–816
    76. Nitsch K-H (1972) The P-T-XCO2 stability field of lawsonite. Contrib Mineral Petrol 34:116–134
    77. Oliva P, Viers J, Dupré B, Fortuné JP, Martin F, Braun JJ, Nahon D, Robain H (1999) The effect of organic matter on chemical weathering: study of a small tropical watershed: nsimi-zoétélé site, cameroon. Geochim Cosmochim Acta 63(23–24):4013–4035
    78. Orem WH, Finkelman RB, Heinrich DH, Karl KT (2003) Coal formation and geochemistry. In: Treatise on geochemistry. Pergamon, Oxford, pp 191–222
    79. Parnell J (2004) Titanium mobilization by hydrocarbon fluids related to sill intrusion in a sedimentary sequence, Scotland. Ore Geol Rev 24(1–2):155–167
    80. Pe-Piper G, Shawna W-M (2008) Early diagenesis of inner-shelf phosphorite and iron-silicate minerals, lower cretaceous of the orpheus graben, southeastern Canada: implications for the origin of chlorite rims. AAPG Bull 92(9):1153–1168
    81. Pe-Piper G, Piper DJW, Dolansky L (2005) Alteration of ilmenite in the cretaceous sandstones of Nova Scotia, southeastern Canada. Clay Clay Miner 53(5):490–510
    82. Pe-Piper G, Karim A, Piper DJW (2011) Authigenesis of titania minerals and the mobility of Ti: new evidence from pro-deltaic sandstones, cretaceous scotian basin, Canada. J Sediment Res 81(10):762–773
    83. Perry CC (2003) Silicification: the processes by which organisms capture and mineralize silica. Rev Mineral Geochem 54(1):291–327
    84. Petrovich R (2001) Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the burgess shale and of some other classical localities. Am J Sci 301(8):683–726
    85. Philippot P, Selverstone J (1991) Trace-element-rich brines in eclogitic veins: implications for fluid composition and transport during subduction. Contrib Mineral Petrol 106(4):417–430
    86. Purtov VK, Kotevnikova AL (1993) Solubility of titanium in chloride and fluoride hydrothermal solutions. Int Geol Rev 35(3):279–287
    87. Puttmann W, Hagemann HW, Merz C, Speczik S (1988) Influence of organic material on mineralization processes in the Permian Kupferschiefer formation, Poland. Org Geochem 13(1–3):357–363
    88. Ramakrishna RS, Paul AA, Fonseka JPR (1989) Uptake of titanium and iron by Ipomoea biloba from titaniferrous sands. Environ Exp Bot 29(3):293–300
    89. Rapp JF, Klemme S, Butler IB, Harley SL (2011) Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: an experimental investigation. Geology 38(4):323–326
    90. Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67(12):2173–2187
    91. Rumble D III, Duke EF, Hoering TL (1986) Hydrothermal graphite in New Hampshire: evidence of carbon mobility during regional metamorphism. Geology 14(6):452–455
    92. Ryzhenko B, Kovalenko N, Prisyagina N (2006) Titanium complexation in hydrothermal systems. Geochem Int 44(9):879–895
    93. Satish-Kumar M (2005) Graphite-bearing CO2-fluid inclusions in granulites: insights on graphite precipitation and carbon isotope evolution. Geochim Cosmochim Acta 69(15):3841–3856
    94. Saxby JD (1973) Diagenesis of metal-organic complexes in sediments: formation of metal sulphides from cystine complexes. Chem Geol 12(4):241–248
    95. Shikazono N (2005) An estimate of dissolution rate constant of volcanic glass in volcanic ash soil from the Mt. Fuji area, central Japan. Geochem J 39:185–196
    96. Spears DA, Kanaris-Sotiriou R (1976) Titanium in some Carboniferous sediments from Great Britain. Geochim Cosmochim Acta 40(3):345–351
    97. Sykes R, Lindqvist JK (1993) Diagenetic quartz and amorphous silica in New Zealand coals. Org Geochem 20(6):855–866
    98. Taboada T, Cortizas AM, Garcia C, Garcia-Rodeja E (2006) Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 131(1–2):218–236
    99. Tarantola A, Mullis J, Guillaume D, Dubessy J, de Capitani C, Abdelmoula M (2009) Oxidation of CH4 to CO2 and H2O by chloritization of detrital biotite at 270 ± 5 °C in the external part of the Central Alps, Switzerland. Lithos 112(3–4):497–510
    100. Teagle DAH, Alt JC (2004) Hydrothermal alteration of basalts beneath the bent hill massive sulfide deposit, middle valley, Juan de Fuca Ridge. Econ Geol 99(3):561–584
    101. Theng BKG, Yuan G (2008) Nanoparticles in the soil environment. Elements 4(6):395–399
    102. Thorseth IH, Furnes H, Tumyr O (1991) A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation. Geochim Cosmochim Acta 55(3):731–749
    103. Tropper P, Manning CE (2005) Very low solubility of rutile in H2O at high pressure and temperature, and its implications for Ti mobility in subduction zones. Am Mineral 90(2–3):502–505
    104. Van Baalen MR (1993) Titanium mobility in metamorphic systems: a review. Chem Geol 110(1–3):233–249
    105. Veblen DR, Ferry JM (1983) A TEM study of the biotite-chlorite reaction and comparison with petrologic observations. Am Mineral 68(11–12):1160–1168
    106. Viereck LG, Griffin BJ, Schmincke H-U, Pritchard RG (1982) Volcaniclastic rocks of the Reydarfjordur drill hole, eastern Iceland 2. Alteration. J Geophys Res 87(B8):6459–6476
    107. Weibel R (1998) Diagenesis in oxidising and locally reducing conditions—an example from the Triassic Skagerrak formation, Denmark. Sediment Geol 121(3–4):259–276
    108. Weibel R, Friis H (2004) Opaque minerals as keys for distinguishing oxidising and reducing diagenetic conditions in the lower Triassic bunter sandstone, North German Basin. Sediment Geol 169(3–4):129–149
    109. Weibel R, Friis H, Mange MA, Wright DT (2007) Alteration of opaque heavy minerals as a reflection of the geochemical conditions in depositional and diagenetic environments. Dev Sedimentol, vol 58. Elsevier, Amsterdam, pp 277–303
    110. Young GM, Nesbitt HW (1998) Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. J Sediment Res 68(3):448–455
    111. Zhang H, Banfield JF (1999) New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. Am Mineral 84(4):528–535
    112. Zhou Z, Fyfe WS (1989) Palagonitization of basaltic glass from DSDP site 335, Leg 37; textures, chemical composition, and mechanism of formation. Am Mineral 74(9–10):1045–1053
  • 作者单位:1. IMPMC, UMR 7590, CNRS, IRD, UPMC, Campus Jussieu, Case Courrier 115, 4 place Jussieu, 75005 Paris, France2. Equipe de Géochimie des Isotopes Stables, IPGP, PRES Sorbonne Paris-Cité, 1 rue Jussieu, 75005 Paris, France3. Laboratoire de Minéralogie et Cosmochimie du Muséum (LMCM), CNRS UMR 7202, Muséum National d’Histoire Naturelle, 57 Rue Cuvier, 75231 Paris Cedex 05, France4. GNS Science, Te Pu Ao, 764 Cumberland Street, Private Bag 1930, Dunedin, New Zealand
  • ISSN:1432-0967
文摘
Understanding the mobility of chemical elements during fluid–rock interactions is critical to assess the geochemical evolution of a rock undergoing burial and metamorphism and, more generally, to constrain the geochemical budget of the subduction factory. In particular, determining the behavior and mobility of Ti in aqueous fluids constitutes a great challenge that is still under scrutiny. Here, we study plant fossils preserved in blueschist metasedimentary rocks from the Marybank Formation (New Zealand). Using scanning and transmission electron microscopies (SEM and TEM), we show that the carbonaceous material (CM) composing the fossils contains abundant nano-inclusions of Ti- and Fe-oxides. These nanocrystals are mainly anatase, rutile, and Fe–Ti oxides. The mineral composition observed within the fossils is significantly different from that detected in the surrounding rock matrix. We propose that Ti and Fe might have been mobilized by the alteration of a detrital Ti–Fe-rich protolith during an early diagenetic event under acidic and reducing conditions. Aqueous fluids rich in organic ligands released by the degradation of organic matter may have been involved. Moreover, using mass balance and petrological observations, we show that the contrasted mineralogy between the rock matrix and the fossil CM might be the consequence of the chemical isolation of fossil CM during the prograde path of the rock. Such an isolation results from the early formation of quartz and Fe-rich phyllosilicate layers enclosing the fossil as characterized by SEM and TEM investigations. Overall, this study shows that investigating minerals associated with CM down to the nanometer scale in metamorphic rocks can provide a precious record of early prograde geochemical conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700