Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model
详细信息    查看全文
  • 作者:Marco De Lucia (1) delucia@gfz-potsdam.de
    Sebastian Bauer (2)
    Christof Beyer (2)
    Michael Kühn (1)
    Thomas Nowak (3)
    Dieter Pudlo (4)
    Viktor Reitenbach (5)
    Susanne Stadler (3)
  • 关键词:CO2 storage – Geochemical modelling – High salinity – Pitzer model – CO2 solubility
  • 刊名:Environmental Earth Sciences
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:67
  • 期:2
  • 页码:563-572
  • 全文大小:448.0 KB
  • 参考文献:1. Accornero M, Marini L (2009) Empirical prediction of the Pitzer’s interaction parameters for cationic Al species with both SiO2(aq) and CO2(aq): implications for the geochemical modelling of very saline solutions. Applied Geochemistry 24(5):747?759
    2. Audigane P, Lions J, Gaus I, Robelin C, Durst P, Van der Meer B, Geel K, Oldenburg C, Xu T (2009) Geochemical modeling of CO2 injection into a methane gas reservoir at the K12-B field, North Sea. In: Grobe M, Pashin JC, Dodge RL (eds) Carbon dioxide sequestration in geological media? State of the science. AAPG Studies in Geology 59. American Association of Petroleum, USA, pp 499–519
    3. Benbow S, Metcalfe R, Wilson J (2008) Pitzer databases for use in thermodynamic modelling. Quintessa Technical Memorandum (unpublished)
    4. Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012) Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulations. Environ Earth Sci. doi:10.1007/s12665-012-1684-1
    5. Christov C, Dickson AG, M?ller N (2007) Thermodynamic modeling of aqueous aluminum chemistry and solid-liquid equilibria to high solution concentration and temperature. I. the acidic H–Al–Na–K–Cl–H2O system from 0 to 100° C. J Solut Chem 36(11):1495–1523
    6. Davies C (1962) Ion association. Butterworth, Washington DC
    7. Dethlefsen F, Haase C, Ebert M, Dahmke A (2011) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65(4):1105–1117
    8. Dick J (2008) Calculation of the relative metastabilities of proteins using the CHNOSZ software package. Geochem Trans 9:10. doi:
    9. Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193(3–4):257–271
    10. Duan Z, Sun R, Zhu C, Chou I (2006) An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl?, and SO42?. Mar Chem 98(2–4):131–139
    11. Duan Z, M?ller N, Weare JH (1992) An equation of state for the Ch4-CO2-H2O system: I. pure systems from 0 to 1000 °C and 0 to 8000 bar. Geochim Cosmochim Acta 56:2605–2617
    12. Gailhanou H, van Miltenburg J, Rogez J, Olives J, Amouric M, Gaucher E, Blanc P (2007) Thermodynamic properties of anhydrous smectite mx-80, illite imt-2 and mixed-layer illite smectite iscz-1 as determined by calorimetric methods. part I: Heat capacities, heat contents and entropies. Geochim Cosmochim Acta 71(22):5463–5473
    13. Gaupp R (1996) Diagenesis types and their application in diagenesis mapping. Rev Mineral Geochem 11–12:1183–1199
    14. Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks (review article). Int J Greenh Gas Control 4(1):73–89
    15. Gaus I, Azaroual M, Czernichowski-Lauriol I (2005) Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol 217(3–4):319–337
    16. Gottschalk M (2007) Equations of state for complex fluids. Rev Mineral Geochem 65:49–97
    17. Harvie C, M?ller N, Weare J (1984) The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 °C. Geochim Cosmochim Acta 48(4):723–751
    18. Johnson JW, Oelkers E, Helgeson H (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comp Geosci 19:899–947
    19. Kühn M, F?rster A, Gro?mann J, Meyer R, Reinicke K, Sch?fer D, Wendel H (2011) CLEAN: Preparing for a CO2-based enhanced gas recovery in a depleted gas field in Germany. Energy Procedia 4:5520–5526
    20. Kühn M, Tesmer M, Pilz P, Meyer R, Reinicke K, F?rster A, Kolditz O, Sch?fer D, Partners C (2012): CLEAN: CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany): project overview. Environ Earth Sci. doi:10.1007/s12665-012-1714-z
    21. Lüders V, Plessen B, Romer R, Weise S, Banks D, Hoth P, Dulski P, Schettler G (2010) Chemistry and isotopic composition of Rotliegend and Upper Carboniferous formation waters from the North German Basin. Chem Geol 276:198–208
    22. Marini L (2007) Geological sequestration of carbon dioxide: thermodynamics, kinetics and reaction path modelling. Elsevier, Oxford
    23. Merkel B, Planer-Friedrich B, Nordstrom D (2005) Groundwater geochemistry. Springer, Berlin
    24. Moog H, M?nig H (2010) Erstellung von Parameterdateien für die Verwendung mit Chemapp und Phreeqc (BGR project 45-4500046190). Technical Report GRS, Braunschweig, Germany
    25. Parkhurst D, Appelo C (1999) Users guide to Phreeqc (version 2). Technical Report, U.S. Geological Survey
    26. Peterson S, Hack K (2007) The thermochemistry library Chemapp and its applications. Int J Mater Res 98:268–277
    27. Pitzer K (1973) Thermodynamics of electrolytes. I. theoretical basis and general equations. J Phys Chem B 77(2):268–277
    28. Pudlo D, Reitenbach V, Albrecht D, Ganzer L, Gernert U, Wienand J, Kohlhepp B, Gaupp R (2012) The impact of diagenetic fluid–rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, Central Germany). Environ Earth Sci. doi:10.1007/s12665-012-1723-y
    29. Regnault O, Lagneau V, Schneider H (2009) Experimental measurement of portlandite carbonation kinetics with supercritical CO2. Chem Geol 265:113–121
    30. Rempel K, Liebscher A, Heinrich W, Schettler G (2011) An experimental investigation of trace element dissolution in carbon dioxide: Applications to the geological storage of CO2. Chem Geol 289(3–4):224–234
    31. Rumpf B, Nicolaisen H, Ocal C, Maurer G (1994) Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation. J Sol Chem 23:431–448
    32. Spycher N, Pruess K, Ennis-King J (2003) CO2 ? H2O mixtures in the geological sequestration of CO2. I: assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochim Cosmochim Acta 67:3015–3031
    33. Spycher N, Pruess K (2005) CO2 ? H2O mixtures in the geological sequestration of CO2. II: partitioning in chloride brines at 12–100 °C and up to 600 bar. Geochim Cosmochim Acta 69:3309–3320
    34. Truesdell A, Jones B (1974) Wateq, a computer program for calculating chemical equilibria of natural waters. J Res Music Educ 2:233–274
    35. Wigand M, Carey JW, Schütt H, Spangenberg E, Erzinger J (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Appl Geochem 23:2735–2745
    36. Wilkinson M, Haszeldine R, Fallick A, Odling N, Stoker S, Gatliff R (2009) CO2-mineral reaction in a natural analogue for CO2 storage-implications for modeling. J Sediment Res 79:486–494
    37. Wolery T (1992) Eq3/6, a software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0) ucrl-ma-110662. Technical Report, Lawrence Livermore National Laboratory, Livermore
    38. Xu T, Sonnenthal EL, Spycher N, Pruess K (2006) TOUGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. Comput Geosci 32:145–165
    39. Xu T, Spycher N, Sonnenthal EL, Zhang G, Zheng L, Pruess K (2011) TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput Geosci 37:763–774
    40. Zhang G, Spycher N, Sonnenthal E, Steefel C, Xu T (2008) Modeling reactive multiphase flow and transport of concentrated aqueous solutions. Nucl Technol 164:180–195
    41. Ziegler K (2006) Clay minerals of the permian Rotliegend group in the North Sea and adjacent areas. Clay Miner 41:355–393
  • 作者单位:1. Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany2. Institute of Geosciences, Geohydromodelling, CAU Christian Albrechts University of Kiel, Ludewig-Meyn-Str. 10, 24118 Kiel, Germany3. Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany4. Friedrich-Schiller-Universit?t Jena, Institute of Earth Sciences, Burgweg 11 D, 07749 Jena, Germany5. Institute of Petroleum Engineering, Clausthal University of Technology, Agricolastra?e 10, 38678 Clausthal-Zellerfeld, Germany
  • ISSN:1866-6299
文摘
Modelling fluid–rock interactions induced by CO2 is a key issue when evaluating the technical feasibility and long-term safety assessment of CO2 storage projects in deep formations. The German R&D programme CLEAN (CO2 Large-Scale Enhanced Gas Recovery in the Altmark Natural Gas Field) investigated the almost depleted onshore gas reservoir located in the Rotliegend sandstone at over 3,000-m depth. The high salinity of the formation fluids and the elevated temperature in the reservoir exceed the validity limits of commonly available thermodynamic databases needed for predictive geochemical modelling. In particular, it is shown that the activity model of Pitzer has to be applied, even if necessary input data for this model are incomplete or inconsistent for complex systems and for the considered temperatures. Simulations based on Debye-Hückel activity model lead to severe, systematic discrepancies already in the simple proposed reference case where experimental data could be used for comparison. A simplified geochemical model, consistent with the average measured composition of formation fluids and the prevailing mineralogical assemblage of the host rock, identifies the mineral phases most likely to be considered at equilibrium with the formation fluid. The simulated reactions due to CO2 injection, under the hypothesis of local thermodynamical equilibrium, result in a moderate reactivity of the system, with the dissolution of anhydrite cementation and haematite being the most relevant expected mineral reactions. This is compensated, at equilibrium, by the precipitation of new carbonates, like calcite and siderite, for an overall very small loss of porous space. The simulated rather small effect of mineral alteration is also due to the scarce amount of water available for reactions in the reservoir. The results of the model are qualitatively in line with observations from batch experiments and from natural analogues.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700