Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species
详细信息    查看全文
  • 作者:Zhe Wang ; Xin Liu ; Weikai Bao
  • 关键词:Growth form ; Life form ; Light interception ; Nutrient distribution ; Photosynthetic performance
  • 刊名:Oecologia
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:180
  • 期:2
  • 页码:359-369
  • 全文大小:902 KB
  • 参考文献:Bao WK, Leng L (2005) Determination methods for photosynthetic pigment content of bryophytes with special relation of extracting solvents. Chin J Appl Environ Biol 11:235–237. doi:10.​3321/​j.​issn:​1006-687X.​2005.​02.​026
    Bates JW (1998) Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82:223–237. doi:10.​2307/​3546962 CrossRef
    Chapin FS, Oechel WC, Vancleve K, Lawrence W (1987) The role of mosses in the phosphorus cycling of an Alaskan black spruce forest. Oecologia 74:310–315. doi:10.​1007/​Bf00379375 CrossRef
    Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001. doi:10.​1093/​aob/​mcm030 PubMedCentral CrossRef PubMed
    Crowley K, Bedford B (2011) Mosses influence phosphorus cycling in rich fens by driving redox conditions in shallow soils. Oecologia 167:253–264. doi:10.​1007/​s00442-011-1970-8 CrossRef PubMed
    Cui XY, Gu S, Wu J, Tang YH (2008) Photosynthetic response to dynamic changes of light and air humidity in two moss species from the Tibetan Plateau. Ecol Res 24:645–653. doi:10.​1007/​s11284-008-0535-8 CrossRef
    Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19. doi:10.​1007/​BF00377192 CrossRef
    Gabriel R, Bates JW (2003) Responses of photosynthesis to irradiance in bryophytes of the Azores laurel forest. J Bryol 25:101–105. doi:10.​1179/​0373668032350017​60
    Glime JM (2007) Physiological ecology. In: Glime JM (ed) Bryophyte ecology, vol 1 (ebook sponsored by Michigan Technological University and the International Association of Bryologists). http://​www.​bryoecol.​mtu.​edu/​ . Accessed 16 Aug 2010
    Hanson D, Renzaglia K, Villarreal J (2014) Diffusion limitation and CO2 concentrating mechanisms in bryophytes. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Dordrecht, pp 95–111CrossRef
    Hidaka A, Kitayama K (2009) Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. J Ecol 97:984–991. doi:10.​1111/​j.​1365-2745.​2009.​01540.​x CrossRef
    Hikosaka K (2004) Interspecific difference in the photosynthesis–nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res 117:481–494. doi:10.​1007/​s10265-004-0174-2
    Hikosaka K, Shigeno A (2009) The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia 160:443–451. doi:10.​1007/​s00442-009-1315-z CrossRef PubMed
    Karst AL, Lechowicz MJ (2007) Are correlations among foliar traits in ferns consistent with those in the seed plants? New Phytol 173:306–312. doi:10.​1111/​j.​1469-8137.​2006.​01914.​x CrossRef PubMed
    Kubásek J, Hájek T, Glime JM (2014) Bryophyte photosynthesis in sunflecks: greater relative induction rate than in tracheophytes. J Bryol 36:110–117. doi:10.​1179/​1743282014Y.​0000000096 CrossRef
    Kürschner H, Frey W (2013) Life strategies in bryophytes—a prime example for the evolution of functional types. Nova Hedwigia 96:83–116. doi:10.​1127/​0029-5035/​2012/​0071 CrossRef
    Lindo Z, Gonzalez A (2010) The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13:612–627. doi:10.​1007/​s10021-010-9336-3
    Liu GS (1996) Analysis for soil chemical properties and nutrients. In: Liu GS (ed) Soil physical and chemical analysis and description of soil profiles. China Standards Press, Beijing, pp 32–38
    Liu X, Wang Z, Bao WK, Li XM (2015) Photosynthetic responses of two pleurocarpous mosses to low-level nitrogen addition: a study in an old-growth fir forest. J Bryol 37:15–22. doi:10.​1179/​1743282014Y.​0000000122 CrossRef
    Lloyd J, Bloomfield K, Domingues TF, Farquhar GD (2013) Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol 199:311–321. doi:10.​1111/​nph.​12281 CrossRef PubMed
    Mägdefrau K (1982) Life-forms of bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 45–58
    Marschall M, Proctor MCF (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603. doi:10.​1093/​aob/​mch178 PubMedCentral CrossRef PubMed
    Michel P, Lee WG, During HJ, Cornelissen JHC (2012) Species traits and their non-additive interactions control the water economy of bryophyte cushions. J Ecol 100:222–231. doi:10.​1111/​j.​1365-2745.​2011.​01898.​x CrossRef
    Niinemets Ü, Sack L (2006) Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany. Springer, Berlin, pp 385–419CrossRef
    Niinemets Ü, Tobias M (2014) Scaling light harvesting from moss “leaves” to canopies. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Dordrecht, pp 151–171CrossRef
    Osnas JL, Lichstein JW, Reich PB, Pacala SW (2013) Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340:741–744. doi:10.​1126/​science.​1231574 CrossRef PubMed
    Poorter H, Lambers H, Evans JR (2014) Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. New Phytol 201:378–382. doi:10.​1111/​nph.​12547 CrossRef PubMed
    Proctor MCF (2005) Why do Polytrichaceae have lamellae? J Bryol 27:221–229. doi:10.​1179/​174328205X69968 CrossRef
    Rascher U, Freiberg M, Lüttge U (2011) Functional diversity of photosynthetic light use of 16 vascular epiphyte species under fluctuating irradiance in the canopy of a giant Virola michelii (Myristicaceae) tree in the tropical lowland forest of French Guyana. Front Plant Sci 2:117. doi:10.​3389/​fpls.​2011.​00117
    Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301. doi:10.​1111/​1365-2745.​12211 CrossRef
    Rice S, Cornelissen JH (2014) Best practices for measuring photosynthesis at multiple scales. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Dordrecht, pp 79–93CrossRef
    Rice SK, Aclander L, Hanson DT (2008) Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). Am J Bot 95:1366–1374. doi:10.​3732/​Ajb.​0800019 CrossRef PubMed
    Rice S, Hanson D, Portman Z (2014) Structural and functional analyses of bryophyte canopies. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Dordrecht, pp 173–185CrossRef
    Romero C, Putz FE, Kitajima K (2006) Ecophysiology in relation to exposure of pendant epiphytic bryophytes in the canopy of a tropical montane oak forest. Biotropica 38:35–41. doi:10.​1111/​j.​1744-7429.​2006.​00099.​x
    Shipley B, Lechowicz MJ, Wright I, Reich PB (2006) Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87:535–541. doi:10.​1890/​05-1051 CrossRef PubMed
    Sterner RW, Elser JJ (2002) Biological chemistry: building cells from elements. In: Sterner RW, Elser JJ (eds) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, pp 44–79
    Street LE et al (2013) The role of mosses in carbon uptake and partitioning in arctic vegetation. New Phytol 199:163–175. doi:10.​1111/​nph.​12285 CrossRef PubMed
    Tobias M, Niinemets U (2010) Acclimation of photosynthetic characteristics of the moss Pleurozium schreberi to among-habitat and within-canopy light gradients. Plant Biol 12:743–754. doi:10.​1111/​j.​1438-8677.​2009.​00285.​x CrossRef PubMed
    Vanderpoorten A, Goffinet B (2009) Physiological ecology. In: Vanderpoorten A, Goffinet B (eds) Introduction to bryophytes. Cambridge University Press, New York, pp 185–213CrossRef
    Waite M, Sack L (2010) How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytol 185:156–172. doi:10.​1111/​j.​1469-8137.​2009.​03061.​x CrossRef PubMed
    Wang Z, Bao WK, Feng DF, Lin HH (2014) Functional trait scaling relationships across 13 temperate mosses growing in wintertime. Ecol Res 29:629–639. doi:10.​1007/​s11284-014-1146-1 CrossRef
    Warton DI, Weber NC (2002) Common slope tests for bivariate errors-in-variables models. Biom J 44:161–174. doi:10.​1002/​1521-4036(200203)44:​2<161:​AID-BIMJ161>3.​0.​CO;2-N CrossRef
    Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev Camb Philos Soc 81:259–291. doi:10.​1017/​S146479310600700​7 CrossRef PubMed
    Westoby M, Reich PB, Wright IJ (2013) Understanding ecological variation across species: area-based vs mass-based expression of leaf traits. New Phytol 199:322–323. doi:10.​1111/​nph.​12345 CrossRef PubMed
    Wright IJ et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.​1038/​nature02403 CrossRef PubMed
    Wu PC (1998) Bryological biology, introduction and diverse branches. Science Press, Beijing
    Xiang S, Reich PB, Sun SC, Atkin OK (2013) Contrasting leaf trait scaling relationships in tropical and temperate wet forest species. Funct Ecol 27:522–534. doi:10.​1111/​1365-2435.​12047 CrossRef
    Ye ZP (2007) A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica 45:637–640. doi:10.​1007/​s11099-007-0110-5 CrossRef
  • 作者单位:Zhe Wang (1)
    Xin Liu (1)
    Weikai Bao (1)

    1. Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, Sichuan, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Ecology
    Plant Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1939
文摘
Ecophysiological studies of bryophytes have generally been conducted at the shoot or canopy scale. However, their growth forms are diverse, and knowledge of whether bryophytes with different shoot structures have different functional trait levels and scaling relationships is limited. We collected 27 bryophyte species and categorised them into two groups based on their growth forms: erect and prostrate species. Twenty-one morphological, nutrient and photosynthetic traits were quantified. Trait levels and bivariate trait scaling relationships across species were compared between the two groups. The two groups had similar mean values for shoot mass per area (SMA), light saturation point and mass-based nitrogen (Nmass) and phosphorus concentrations. Erect bryophytes possessed higher values for mass-based chlorophyll concentration (Chlmass), light-saturated assimilation rate (A mass) and photosynthetic nitrogen/phosphorus use efficiency. Nmass, Chlmass and A mass were positively related, and these traits were negatively associated with SMA. Furthermore, the slope of the regression of Nmass versus Chlmass was steeper for erect bryophytes than that for prostrate bryophytes, whereas this pattern was reversed for the relationship between Chlmass and A mass. In conclusion, erect bryophytes possess higher photosynthetic capacities than prostrate species. Furthermore, erect bryophytes invest more nitrogen in chloroplast pigments to improve their light-harvesting ability, while the structure of prostrate species permits more efficient light capture. This study confirms the effect of growth form on the functional trait levels and scaling relationships of bryophytes. It also suggests that bryophytes could be good models for investigating the carbon economy and nutrient allocation of plants at the shoot rather than the leaf scale. Keywords Growth form Life form Light interception Nutrient distribution Photosynthetic performance

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700