Optimizing linear routing in the ToLHnet protocol to improve performance over long RS-485 buses
详细信息    查看全文
  • 作者:Michele Alessandrini ; Giorgio Biagetti ; Paolo Crippa…
  • 刊名:EURASIP Journal on Embedded Systems
  • 出版年:2017
  • 出版时间:December 2017
  • 年:2017
  • 卷:2017
  • 期:1
  • 全文大小:1,083 KB
  • 刊物主题:Signal, Image and Speech Processing;
  • 出版者:Springer International Publishing
  • ISSN:1687-3963
  • 卷排序:2017
文摘
As the adoption of sensing and control networks rises to encompass the most diverse fields, the need for simple, efficient interconnection between many different devices will become ever more pressing. Though wireless communication is certainly appealing, current technological limits still prevent its usage where high reliability is needed or where the electromagnetical environment is not really apt to let radio waves through. In these cases, a wired link, based on a robust and well-consolidated standard such as an RS-485 bus, might prove to be a good choice. In this paper, we present an extension to the routing strategy originally implemented in the recently proposed “tree or linear hopping network” (ToLHnet) protocol, aimed at better handling the special but important case of linear routing over a (possibly very long) wired link, such as an RS-485 bus. The ToLHnet protocol was especially developed to suit the need of low complexity for deployments on large control networks. Indeed, using it over RS-485 already makes it possible to overcome many of the traditional limitations regarding cable length, without requiring segmenting the bus to install repeaters. With the extension here proposed, it will also be possible to simultaneously reduce latency (i.e., increase throughput, should it matter) for short-distance communications over the same cable, largely increasing the overall network efficiency, with a negligible increase in the complexity of the nodes’ firmware.KeywordsRouting protocolsSensor networksControl networksLinear routing

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700