Spatial distribution and the interdecadal change of leading modes of heat budget of the mixed-layer in the tropical Pacific and the association with ENSO
详细信息    查看全文
  • 作者:Zeng-Zhen Hu ; Arun Kumar ; Bohua Huang
  • 关键词:Spatial distribution ; Leading modes of heat budget of the mixed ; layer ; The tropical Pacific ; The association with ENSO ; Interdecadal change ; Global Ocean Data Assimilation System
  • 刊名:Climate Dynamics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:46
  • 期:5-6
  • 页码:1753-1768
  • 全文大小:12,442 KB
  • 参考文献:Barnston AG, Chelliah M, Goldenberg SB (1997) Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos Ocean 35:367–383CrossRef
    Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712CrossRef
    Bay T, Dommenget D (2014) Comparing the spatial structure of variability in two datasets against each other on the basis of EOF-modes. Clim Dyn 42:1631–1648CrossRef
    Behringer DW (2005) The global ocean data assimilation system (GODAS) at NCEP, 11th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), San Antonio, TX, Amer. Meteor. Soc., 3.3 [Available online at https://​ams.​confex.​com/​ams/​87ANNUAL/​webprogram/​11IOAS.​html ]
    Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3 [Available online at http://​ams.​confex.​com/​ams/​84Annual/​techprogram/​paper_​70720.​htm ]
    Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172CrossRef
    Clarke AJ (2010) Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: the ‘tilt’ and ‘warm water volume’ modes. J Phys Ocean 40(1):121–137CrossRef
    Dommenget D, Latif M (2002) A cautionary note on the interpretation of EOFs. J Climate 15:216–225CrossRef
    Glantz MH (2000) Currents of change: impacts of El Niño and La Niña on climate and society. Cambridge University Press, Cambridge, UK, p 266. ISBN 052178672X
    Hu Z-Z, Nitta T (1996) Wavelet analysis of summer rainfall over North China and India and SOI using 1891–1992 data. J Meteorol Soc Jpn 74(6):833–844
    Hu Z-Z, Kumar A, Jha B, Wang W, Huang B, Huang B (2012) An analysis of warm pool and cold tongue El Niños: air-sea coupling processes, global influences, and recent trends. Climate Dyn 38(9–10):2017–2035. doi:10.​1007/​s00382-011-1224-9 CrossRef
    Hu Z-Z, Kumar A, Ren H-L, Wang H, L’Heureux M, Jin F-F (2013a) Weakened interannual variability in the tropical Pacific Ocean since 2000. J Climate 26(8):2601–2613. doi:10.​1175/​JCLI-D-12-00265.​1 CrossRef
    Hu Z-Z, Kumar A, Huang B, Zhu J (2013b) Leading modes of upper ocean temperature interannual variability along the equatorial Atlantic Ocean in NCEP GODAS. J Climate 26(13):4649–4663. doi:10.​1175/​JCLI-D-12-00629.​1 CrossRef
    Huang B, Schneider EK (1995) The response of an ocean general circulation model to surface wind stress produced by an atmospheric general circulation model. Mon Weather Rev 123:3059–3085CrossRef
    Huang B, Xue Y, Zhang D, Kumar A, McPhaden MJ (2010) The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J Climate 23:4901–4925CrossRef
    Huang B, Xue Y, Wang H, Wang W, Kumar A (2012) Mixed layer heat budget of the El Niño in NCEP climate forecast system. Climate Dyn 39(1–2):365–381. doi:10.​1007/​s00382-011-1111-4 CrossRef
    Jin F-F (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRef
    Jin F-F (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847CrossRef
    Kanamitsu M et al (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bull Am Met Soc 83:1631–1643CrossRef
    Kang I-S, An S-I, Jin F-F (2001) A systematic approximation of the SST anomaly equation for ENSO. J Meteorol Soc Jpn 79:1–10CrossRef
    Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Climate 22:615–632CrossRef
    Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Climate 22:1499–1515. doi:10.​1175/​2008JCLI2624.​1 CrossRef
    Kumar A, Hu Z-Z (2014) Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dyn 42(5–6):1243–1258. doi:10.​1007/​s00382-013-1721-0 CrossRef
    Lau N-C, Philander SGH, Nath MJ (1992) Simulation of ENSO-like phenomena with a low-resolution coupled GCM of the global ocean and atmosphere. J Climate 5(4):284–307CrossRef
    Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.​1029/​2010GL044007
    McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39:L09706. doi:10.​1029/​2012GL051826 CrossRef
    Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Climate 13:3551–3559CrossRef
    National Research Council (2010) Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. The National Academies Press, Washington, p 192. ISBN 0-309-15183-X
    North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706CrossRef
    Picaut J, Masia F, du Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666CrossRef
    Rasmusson EM, Carpenter TH (1982) Variation in tropical sea surface temperature and surface wind fields associated with Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRef
    Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Climate 15:1609–1625CrossRef
    Sarachik ES, Cane MA (2010) The El Niño-Southern Oscillation Phenomenon. Cambridge University Press, London 384 pp CrossRef
    Schopf PS, Suarez MJ (1987) Vacillations in a coupled ocean-atmosphere model. J Atmos Sci 45:549–566CrossRef
    Walker GT (1923) Correlations in seasonal variations of weather, VIII. A preliminary study of world weather I. Mem India Meteorol Dep 23:75–131
    Wang C (2001) A unified oscillator model for the El Niño-Southern Oscillation. J Climate 14:98–115CrossRef
    Wang W, Chen M, Kumar A (2010) An assessment of the CFS real-time seasonal forecasts. Weather Forecast 25:950–969CrossRef
    Wen C, Kumar A, Xue Y, McPhaden MJ (2014) Changes in tropical pacific thermocline depth and their relationship to ENSO after 1999. J Climate 27:7230–7249CrossRef
    Wyrtki K (1975) E1 Niño-the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Ocean 5:572–584CrossRef
    Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 90(C4):7129–7132CrossRef
    Xiang B, Wang B, Li T (2013) A new paradigm for the predominance of standing Central Pacific warming after the late 1990s. Climate Dyn 41(2):327–340. doi:10.​1007/​s00382-012-1427-8 CrossRef
    Yeh S, Kug J, Dewitte B, Kwon M, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461(7263):511–514CrossRef
    Zebiak SE, Cane MA (1987) A model El Niño/Southern Oscillation. Mon Wea Rev 115:2262–2278CrossRef
    Zhang R-H, Levitus S (1996) Structure and evolution of interannual variability of the tropical Pacific upper ocean temperature. J Geophys Res 101:20501–20524CrossRef
    Zhang Q, Kumar A, Xue Y, Wang W, Jin F-F (2007) Analysis of ENSO cycle in NCEP coupled forecast model. J Climate 20:1265–1284CrossRef
    Zhu J, Huang B, Balmased MA (2012) An ensemble estimation of the variability of upper-ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products. Climate Dyn 39(3–4):1001–1020. doi:10.​1007/​s00382-011-1189-8 CrossRef
  • 作者单位:Zeng-Zhen Hu (1)
    Arun Kumar (1)
    Bohua Huang (2) (3)

    1. Climate Prediction Center, NCEP/NWS/NOAA, 5830 University Research Court, College Park, MD, 20740, USA
    2. Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA
    3. Center for Ocean-Land-Atmosphere Studies, 270 Research Hall, Mail Stop 6C5, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
Using heat budget diagnosis of ocean mixed layer from the Global Ocean Data Assimilation System, the spatial distribution of the leading modes of the heat budget was examined. The analysis was for the tropical Pacific in 1979–2013 and was based on combined empirical orthogonal function (CEOF) analysis. The interdecadal changes of the leading modes and their associations with El Niño-Southern Oscillation (ENSO) were also analyzed. The first leading CEOF mode (CEOF1) corresponds to the ENSO mature phase. The contribution from the zonal advection was relatively small along the equator, except the region near the Pacific coast of Central America. The vertical entrainment and diffusion (surface heat flux) had pronounced maxima with positive (negative) values along the equatorial central and eastern Pacific. The meridional advection displayed a different spatial pattern with large positive values on both sides of the equator and smaller values along the equator. The total meridional advection anomaly was mainly determined by advection of anomalous temperature by climatological current responsible for broadening of the ENSO SSTA pattern meridionally. The zonal advection varied almost simultaneously with the tendency of ocean temperature anomaly in the mixed layer. The second leading CEOF mode (CEOF2) included contribution to SSTA tendency during the ENSO developing phase. The distribution pattern and amplitude of the zonal advection in the eastern Pacific in CEOF2 was similar to but with opposite sign to that in CEOF1. The amplitudes of the other dynamical and thermodynamical terms were smaller than that in CEOF1 and spatial distributions displayed an opposite variation between the Pacific coast of Central America and central and eastern tropical Pacific in CEOF2. A comparison of two periods (1979–1999 and 2000–2013) suggested that coupling in the tropical Pacific weakened at ENSO time scales and shifted to a relatively higher frequency regime (from 2 to 4 years averaged in 1979–1999 to 1.5–3 years) after 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700