Design of a dual species atom interferometer for space
详细信息    查看全文
  • 作者:Thilo Schuldt ; Christian Schubert ; Markus Krutzik…
  • 关键词:Atom interferometer ; Space technology ; Equivalence principle test ; Bose ; Einstein condensate
  • 刊名:Experimental Astronomy
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:39
  • 期:2
  • 页码:167-206
  • 全文大小:4,478 KB
  • 参考文献:1.Gauguet, A., et al.: Characterization and limits of a cold-atom Sagnac interferometer. Phys. Rev. A 80, 063604 (2009)ADS View Article
    2.Müller, T., et al.: A compact atom interferometer gyroscope based on laser-cooled rubidium. Eur. Phys. J. D 53, 273-81 (2009)ADS View Article
    3.Stockton, J.K., et al.: Absolute geodetic rotation measurement using atom interferometry. Phys. Rev. Lett. 107, 133001 (2011)ADS View Article
    4.Tackmann, G., et al.: Self-alignment of a compact large-area atomic Sagnac interferometer. New. J. Phys. 14, 015002 (2012)ADS View Article
    5.Canuel, B., et al.: Six-axis inertial sensor using cold-atom interferometry. Phys. Rev. Lett. 97, 010402 (2006)ADS View Article
    6.Peters, A., et al.: Measurement of gravitational acceleration by dropping atoms. Nature 400, 849 (1999)ADS View Article
    7.Louchet-Chauvet, A., et al.: The influence of transverse motion within an atomic gravimeter. New. J. Phys. 13, 065025 (2011)ADS View Article
    8.McGuirk, J.M., et al.: Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 65, 033608 (2002)ADS View Article
    9.Bonnin, A., et al.: Simultaneous dual-species matter-wave accelerometer. Phys. Rev. A 88, 043615 (2013)ADS View Article
    10.Graham, P.W., et al.: A New method for gravitational wave detection with atomic sensors. Phys. Rev. Lett. 110, 171102 (2013)ADS View Article
    11.Hogan, J.M., et al.: An atomic gravitational wave interferometric sensor in Low earth orbit (AGIS-LEO). Gen. Relativ. Gravit. 43, 1953-009 (2011)MathSciNet ADS View Article
    12.Drinkwater, M. R., et al.: GOCE: ESA’s first earth explorer core mission. In: Beutler, G. B. Drinkwater, M. Rummel, R. Steiger, R. (Eds.), Earth Gravity Field from Space - from Sensors to Earth Sciences. In the Space Sciences Series of ISSI, Vol. 18, 419-32, Kluwer Academic Publishers, Dordrecht, Netherlands, ISBN: 1-4020-1408-2 (2003)
    13.Reigber, C. et al.: Earth gravity field and seasonal variability from CHAMP. In: Reigber, C. Lühr,H. Wickert, J. (Edss) Earth Observation with CHAMP -Results from Three Years in Orbit, Springer, Berlin, Heidelberg, New York, pp 25-0
    14.Tapley, B. D. et al.: The gravity recovery and climate experiment: mission overview and early results, doi:10.-029/-004GL019779
    15.Kohel, J. M. et al.: Quantum gravity gradiometer development for space, proc. of the sixth annual NASA science technology conference, ESTC (2006)
    16.Carraz, O. et al., spaceborne gravity gradiometer concept based on cold atom interferometers for measuring earth’s gravity field, arXiv:1406.0765 (2014)
    17.Dubois, J.-B. et al.: Microscope, a femto-g accelerometry mission: technologies and mission overview, Proceedings of the 4S Symposium: Small Satellite Systems and Services, Chia Laguna Sardinia, Italy, Sept. 25-9, 2006, ESA SP-618
    18.STE-QUEST team: STE-QUEST Assessment Study Report (Yellow Book), ESA, http://?sci.?esa.?int/?ste-quest/-3445-ste-quest-yellow-book (2013). Accessed 22 September 2014
    19.Aguilera, D., et al.: STE-QUEST - test of the universality of free fall using cold atom interferometry. Class. Quantum. Grav. 31, 115010 (2014)MathSciNet ADS View Article
    20.Hechenblaikner, G. et al.: STE-QUEST mission and system design. overview after completion of Phase-A, Exp. Astron., 2014, doi:10.-007/?s10686-014-9373-6
    21.Tino, G.M., et al.: Precision gravity tests with atom interferometry in space. Nucl. Physics B (Proc. Suppl.) 243-44, 203-17 (2013)View Article
    22.Abadie, J., et al.: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Phys. Rev. D 81, 102001 (2010)ADS View Article
    23.Danzmann, K. et al.: The gravitational universe, eLISA white paper
    24.Schubert, C. et al.: Differential atom interferometry with 87Rb and 85Rb for testing the UFF in STE-QUEST, Preprint: arXiv:1312.5963v1 (2013)
    25.Fray, S., et al.: Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93, 240404 (2004)ADS View Article
    26.Biedermann, G.W., et al.: Low-noise simultaneous fluorescence detection of two atomic states. Opt. Lett. 34, 347 (2009)ADS View Article
    27.Sorrentino, F., et al.: A compact atom interferometer for future space missions, microgravity. Sci. Technol 22(4), 551-61 (2010)MathSciNet
    28.Sorrentino, F. et al.: The Space Atom Interferometer project: status and prospects, J. Physics. Conf. Series 327, 012050 (2011)
    29.van Zoest, T., et al.: Bose-einstein condensation in microgravity. Science 328, 1540 (2010)ADS View Article
    30.Rudolph, J., et al.: Degenerate quantum gases in microgravity. Micrograv. Sci. Technol. 23, 287 (2011)View Article
    31.Nyman, R.A. et al.: I.C.E.: A transportable atomic inertial sensor for test in microgravity, Appl. Phys. B. 84, 673, (2006)
    32.Geiger, R., et al.: Detecting inertial effects with airborne matter-wave interferometry. Nat. Comm. 2,
  • 作者单位:Thilo Schuldt (1)
    Christian Schubert (2)
    Markus Krutzik (3)
    Lluis Gesa Bote (4)
    Naceur Gaaloul (2)
    Jonas Hartwig (2)
    Holger Ahlers (2)
    Waldemar Herr (2)
    Katerine Posso-Trujillo (2)
    Jan Rudolph (2)
    Stephan Seidel (2)
    Thijs Wendrich (2)
    Wolfgang Ertmer (2)
    Sven Herrmann (5)
    André Kubelka-Lange (5)
    Alexander Milke (5)
    Benny Rievers (5)
    Emanuele Rocco (6)
    Andrew Hinton (6)
    Kai Bongs (6)
    Markus Oswald (7)
    Matthias Franz (7)
    Matthias Hauth (3)
    Achim Peters (3)
    Ahmad Bawamia (8)
    Andreas Wicht (8)
    Baptiste Battelier (9)
    Andrea Bertoldi (9)
    Philippe Bouyer (9)
    Arnaud Landragin (10)
    Didier Massonnet (11)
    Thomas Lévèque (11)
    Andre Wenzlawski (12)
    Ortwin Hellmig (12)
    Patrick Windpassinger (12) (19)
    Klaus Sengstock (12)
    Wolf von Klitzing (13)
    Chris Chaloner (14) (20)
    David Summers (14)
    Philip Ireland (14)
    Ignacio Mateos (4)
    Carlos F. Sopuerta (4)
    Fiodor Sorrentino (15)
    Guglielmo M. Tino (15)
    Michael Williams (16)
    Christian Trenkel (16)
    Domenico Gerardi (17)
    Michael Chwalla (17)
    Johannes Burkhardt (17)
    Ulrich Johann (17)
    Astrid Heske (18)
    Eric Wille (18)
    Martin Gehler (18)
    Luigi Cacciapuoti (18)
    Norman Gürlebeck (5)
    Claus Braxmaier (1) (5)
    Ernst Rasel (2)

    1. Institute of Space Systems, German Aerospace Center (DLR), Robert-Hooke-Str. 7, 28359, Bremen, Germany
    2. Institut für Quantenoptik, Leibniz Universit?t Hannover, Welfengarten 1, 30167, Hannover, Germany
    3. Institut für Physik, Humboldt-Universit?t zu Berlin, Newtonstr. 15, 12489, Berlin, Germany
    4. Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Facultat de Ciències, 08193, Bellaterra, Spain
    5. Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM), Universit?t Bremen, Am Fallturm, 28359, Bremen, Germany
    6. School of Physics and Astronomy, University of Birmingham, Birmingham, B152TT, UK
    7. Institut für Optische Systeme, University of Applied Sciences Konstanz (HTWG), Brauneggerstr. 55, 78462, Konstanz, Germany
    8. Ferdinand-Braun-Institut, Leibniz-Institut für H?chstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
    9. Laboratoire Photonique, Numérique et Nanosciences-LP2N Université Bordeaux-IOGS-CNRS: UMR 5298, Talence, France
    10. LNE-SYRTE, Observatoire de Paris, CNRS and UPMC, 61 avenue de l’observatoire, 75014, Paris, France
    11. CNES - Centre National d’études Spatiales, 18 Avenue édouard Belin, 31400, Toulouse, France
    12. Institut für Laserphysik, Universit?t Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
    19. Johannes-Gutenberg-University Mainz, Staudingerweg 7, 55099, Mainz, Germany
    13. Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Vassilika Vouton, GR-71110, Heraklion, Greece
    14. SEA House, Bristol Business Park, Coldharbour Lane, Bristol, BS16 1EJ, UK
    20. Trym Systems Ltd, 1 College Park Drive Westbury-on-Trym, Bristol, BS10 7AN, UK
    15. Dipartimento di Fisica e Astronomia and LENS, Università di Firenze - INFN, Sezione di Firenze - via G. Sansone 1, 50019, Sesto Fiorentino (Firenze), Italy
    16. Astrium Ltd, Gunnels Wood Road, Stevenage, SGI 2AS, UK
    17. Astrium GmbH - Satellites, Claude-Dornier-Str., 88090, Immenstaad, Germany
    18. ESA - European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noordwijk, ZH, Netherlands
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Statistics for Engineering, Physics, Computer Science, Chemistry and Geosciences
  • 出版者:Springer Netherlands
  • ISSN:1572-9508
文摘
Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth’s gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species 85Rb/87Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for 10?1?mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system. The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221?kg, an average power consumption of 608?W (814?W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700