New high-accuracy spacecraft VLBI tracking using high data-rate signal: A demonstration with Chang'E-3
详细信息    查看全文
  • 作者:Huan Zhou ; DeZhen Xu ; ShaoWu Chen ; HaiTao Li…
  • 关键词:spacecraft VLBI tracking ; high data ; rate signal ; differential phase delay ; Chang’E ; 3 ; deep ; space navigation
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:59
  • 期:4
  • 页码:558-564
  • 全文大小:720 KB
  • 参考文献:1.Border J S, Lanyi G E, Shin D K. Radiometric tracking for deep space navigation. In: Proceedings of the 31st Annual AAS Guidance and Control Conference, Breckenridge, Colorado, 2008
    2.Lanyi G E, Bagri D S, Border J S. Angular position determination of spacecraft by radio interferometry. P IEEE, 2007, 85: 2193–2201CrossRef
    3.Li P J, Huang Y, Chang S Q, et al. Positioning for the Chang’E-3 lander and rover using Earth-based observations (in Chinese). Chin Sci Bull (Chin Ver), 2014, 59: 3162–3173CrossRef
    4.Border J S. Innovations in delta differential one-way range: From Viking to Mars Science Laboratory. In: Proceedings of the 21st International Symposium on Space Flight Dynamics, Toulouse, France, 2009
    5.Liu Q H, Chen M, Xiong W M, et al. Relative position determination of a lunar rover using high-accuracy multi-frequency same-beam VLBI. Sci China-Phys Mech Astron, 2010, 53: 571–578CrossRef
    6.Chen M, Liu Q H, Wu Y J, et al. Relative position determination of a lunar rover using the biased differential phase delay of same-beam VLBI. Sci China-Phys Mech Astron, 2011, 54: 2284–2295MathSciNet CrossRef
    7.Lanyi G E, Border J S, Benson J, et al. Determination of angular separation between spacecraft and quasars with the very long baseline array. JPL: Interplanetary Network Progress Report 42–162, 2005
    8.Majid W, Bagri D. In-beam phase referencing with the deep space network array. JPL: Interplanetary Network Progress Report 42–169, 2007
    9.Martin-Mur T J, Highsmith D E. Mars approach navigation using the VLBA. In: Proceedings of the 21st International Symposium on Space Flight Dynamics, Toulouse, France, 2009. 1–10
    10.Jones D L, Fomalont E, Dhawan V, et al. Very long baseline array astrometric observations of the Cassini spacecraft at Saturn. Astron J, 2011, 141: 29–45CrossRef
    11.Duev D A, Calves G M, Pogrebenko S V, et al. Spacecraft VLBI and Doppler tracking: Algorithms and implementation. Astron Astrophys, 2012, 541: A43CrossRef
    12.Zhou H, Li H T, Dong G L. Relative position determination between Chang’E-3 lander and rover using in-beam phase referencing. Sci China Inf Sci, 2015, 58: 092201
    13.Sun Z Z, Jia Y, Zhang H. Technological advancements and promotion roles of Chang’e-3 lunar probe mission. Sci China Tech Sci, 2013, 56: 2702–2708CrossRef
    14.Greisen E, Bridle A. AIPS Cookbook. USA: National Radio Astronomy Observatory, 2013
    15.Taylory G. The Difmap Cookbook. Pasadena, CA: California Institute of Technology, 2013
    16.Wu W R, Wang D Y, Xin Y, et al. Binocular visual odometry algorithm and experimentation research for the lunar rover (in Chinese). Sci Sin Inform, 2011, 41: 1415–1422
    17.Wang B F, Zhou J L, Tang G S, et al. Research on visual localization method of lunar rover (in Chinese). Sci Sin Inform, 2014, 44: 452–460CrossRef
    18.Liu Q H, Zheng X, Huang Y, et al. Monitoring motion and measuring relative position of the Chang’E-3 rover. Radio Sci, 2014, 49: 1080–1086CrossRef
    19.Huang Y, Chang S Q, Li P J, et al. Orbit Determination of Chang’E-3 and positioning of the lander and the rover. Chin Sci Bull, 2014, 59: 3858–3867CrossRef
    20.Liu Z Q, Di K C, Peng M, et al. High precision landing site mapping and rover localization for Chang’e-3 mission. Sci China-Phys Mech Astron, 2015, 58: 019601
    21.Kahn R D, Folkner W M, Edwards C D, et al. Position determination of a lander and rover at Mars with Earth-based differential tracking. JPL: The Telecommunications and Data Acquisition Progress Report 42–108, 1992
    22.Kreslavsky M A, Head J W, Neumann G A, et al. Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units. Icarus, 2013, 226: 52–66CrossRef
  • 作者单位:Huan Zhou (1)
    DeZhen Xu (1)
    ShaoWu Chen (1)
    HaiTao Li (1)
    GuangLiang Dong (1)

    1. Beijing Institute of Tracking and Telecommunications Technology, Beijing, 100094, China
  • 刊物类别:Engineering
  • 刊物主题:Chinese Library of Science
    Engineering, general
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1900
文摘
As the scientific data volume in deep-space exploration rapidly grows, spacecraft heavily relies on high data-rate signals that span several megahertz to transmit data back to Earth. Employing high data-rate signals for high-accuracy radiometric interferometry can simultaneously deal with data transmission and spacecraft navigation. We demonstrate very long baseline interferometry (VLBI) tracking of the Chang’E-3 lander and rover to determine their relative lunar-surface position using downlink high data-rate signals. A new method based on the VLBI phase-referencing technique is proposed to obtain the differential phase delay, which is much more accurate than the differential group delay acquired by conventional VLBI approaches. The systemic errors among different signal channels have been well calibrated using the new method. The data from the Chang’E-3 mission were then processed, and meter-level accuracy positions of the rover with respect to the lander have been obtained. This demonstration shows the feasibility of high-accuracy radiometric interferometry using high data-rate signals. The method proposed in this paper can also be applied to future deep-space navigation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700