Influence of grain size on the electrochemical behavior of pure copper
详细信息    查看全文
  • 作者:L. Lapeire ; E. Martinez Lombardia ; I. De Graeve ; H. Terryn…
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:52
  • 期:3
  • 页码:1501-1510
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics;
  • 出版者:Springer US
  • ISSN:1573-4803
  • 卷排序:52
文摘
Despite numerous research works a thorough understanding on how grain size influences the electrochemical behavior of metals is still lacking due to the inability to decouple grain size effects from other microstructural characteristics. In this work, the combination of potentiodynamic polarization measurements and the gold-nanoplating technique was used on high purity copper to further explore this relationship. The high purity copper was thermomechanically processed in such a way that three samples were produced with markedly different average grain sizes, namely 1.4, 48 and 191 µm. All other parameters influencing the electrochemical behavior, such as internal stresses and texture were kept constant; microstructural characterization was performed by electron backscatter diffraction. In 0.1 M HCl, the anodic polarization curves demonstrate that for the smaller the grain size a lower corrosion potential and higher corrosion current density is observed. The gold-nanoplating experiments show that the material with the smallest grain size is corroding more uniformly than the samples with the larger grain sizes. In the sample with the medium grain size, the higher electrochemical activity of the grain boundaries is demonstrated. In the largest grain size sample, both the grain boundaries as well as some of the grain interiors are covered with gold.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700