Oscillatory motions for the restricted planar circular three body problem
详细信息    查看全文
  • 作者:Marcel Guardia ; Pau Martín ; Tere M. Seara
  • 刊名:Inventiones Mathematicae
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:203
  • 期:2
  • 页码:417-492
  • 全文大小:1,270 KB
  • 参考文献:1.Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Dynamical Systems III. Encyclopaedia of Mathematical Sciences, vol. 3. Springer, Berlin (1988)
    2.Alekseev, V.M.: Quasirandom oscillations and qualitative problems in celestial mechanics. In: Ninth Mathematical Summer School (Kaciveli, 1971) (Russian). Three papers on smooth dynamical systems, pp. 212–341. Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev (1972)
    3.Alexeyev, V.M.: Sur l’allure finale du mouvement dans le problème des trois corps. Actes du Congrès International des Mathématiciens (Nice. 1970), Tome 2, pp. 893–907. Gauthier-Villars, Paris (1971)
    4.Alekseev, V.M.: Final motions in the three-body problem and symbolic dynamics. Uspekhi Mat. Nauk 36(4(220)), 161–176, 248 (1981)
    5.Baldomá, I., Fontich, E.: Exponentially small splitting of invariant manifolds of parabolic points. Mem. Am. Math. Soc. 167(792), x-83 (2004)
    6.Baldomá, I., Fontich, E., Guàrdia, M., Seara, T.M.: Exponentially small splitting of separatrices beyond Melnikov analysis: rigorous results. J. Differ. Equ. 253(12), 3304–3439 (2012)CrossRef
    7.Bolotin, Sergey: Symbolic dynamics of almost collision orbits and skew products of symplectic maps. Nonlinearity 19(9), 2041–2063 (2006)CrossRef MathSciNet
    8.Delshams, A., Kaloshin, V., de la Rosa, A., Seara, T.: Parabolic orbits in the restricted three body problem. (2014). http://​arxiv.​org/​abs/​1501.​01214
    9.Delshams, A., Seara, T.M.: An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum. Commun. Math. Phys. 150(3), 433–463 (1992)CrossRef MathSciNet
    10.Delshams, A., Seara, T.M.: Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom. Math. Phys. Electron. J. 3(4), (1997)
    11.Erdélyi, A.: Asymptotic Expansions. Dover Publications Inc., New York (1956)
    12.Gelfreich, V.G.: Melnikov method and exponentially small splitting of separatrices. Phys. D 101(3–4), 227–248 (1997)CrossRef MathSciNet
    13.Gelfreich, V.G.: Separatrix splitting for a high-frequency perturbation of the pendulum. Russ. J. Math. Phys. 7(1), 48–71 (2000)MathSciNet
    14.Galante, J., Kaloshin, V.: Destruction of invariant curves using the ordering condition. http://​www.​terpconnect.​umd.​edu/​~vkaloshi (2010)
    15.Galante, J., Kaloshin, V.: The method of spreading cumulative twist and its application to the restricted circular planar three body problem. http://​www.​terpconnect.​umd.​edu/​~vkaloshi (2010)
    16.Galante, J., Kaloshin, V.: Destruction of invariant curves in the restricted circular planar three-body problem by using comparison of action. Duke Math. J. 159(2), 275–327 (2011)CrossRef MathSciNet
    17.Gorodetski, A., Kaloshin, V.: Hausdorff dimension of oscillatory motions for restricted three body problems. http://​www.​terpconnect.​umd.​edu/​~vkaloshi (2012)
    18.Guardia, M., Olivé, C., Seara, T.: Exponentially small splitting for the pendulum: a classical problem revisited. J. Nonlinear Sci. 20(5), 595–685 (2010)CrossRef MathSciNet
    19.Guardia, M.: Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discret. Contin. Dyn. Syst. A. 33(7), 2829–2859 (2012)CrossRef MathSciNet
    20.Holmes, P., Marsden, J., Scheurle, J.: Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations. In: Hamiltonian Dynamical Systems (Boulder, CO, 1987). Contemp. Math., vol. 81. American Mathematical Society, Providence (1988)
    21.Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge (1995)
    22.Lochak, P., Marco, J.-P., Sauzin, D.: On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems. Mem. Am. Math. Soc. 163(775), viii+145 (2003)
    23.Llibre, J., Simó, C.: Oscillatory solutions in the planar restricted three-body problem. Math. Ann. 248(2), 153–184 (1980)CrossRef MathSciNet
    24.Llibre, J., Simó, C.: Some homoclinic phenomena in the three-body problem. J. Differ. Equ. 37(3), 444–465 (1980)CrossRef
    25.McGehee, R.: A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. J. Differ. Equ. 14, 70–88 (1973)CrossRef MathSciNet
    26.Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 12, 1–57 (1963)
    27.Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the \(N\) -Body Problem. Springer, New York (1992)CrossRef
    28.Moeckel, R.: Heteroclinic phenomena in the isosceles three-body problem. SIAM J Math Anal 15(5), 857–876 (1984)CrossRef MathSciNet
    29.Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton (1973). (With special emphasis on celestial mechanics, Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, NJ, Ann. Math. Stud., No. 77)
    30.Martínez, R., Pinyol, C.: Parabolic orbits in the elliptic restricted three body problem. J. Differ. Equ. 111(2), 299–339 (1994)CrossRef
    31.Neĭshtadt, A.I.: The separation of motions in systems with rapidly rotating phase. Prikl. Mat. Mekh. 48(2), 197–204 (1984)MathSciNet
    32.Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13, 1–270 (1890)CrossRef
    33.Sauzin, D.: A new method for measuring the splitting of invariant manifolds. Ann. Sci. École Norm. Sup. (4), 34(2), 159–221 (2001)
    34.Sitnikov, K.: The existence of oscillatory motions in the three-body problems. Sov. Phys. Dokl. 5, 647–650 (1960)MathSciNet
    35.Treschev, D.: Separatrix splitting for a pendulum with rapidly oscillating suspension point. Russ. J. Math. Phys. 5(1), 63–98 (1997)MathSciNet
    36.Xia, Z.: Mel’nikov method and transversal homoclinic points in the restricted three-body problem. J. Differ. Equ. 96(1), 170–184 (1992)CrossRef
  • 作者单位:Marcel Guardia (1)
    Pau Martín (2)
    Tere M. Seara (1)

    1. Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
    2. Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Campus Nord, Edifici C3, C. Jordi Girona, 1-3, 08034, Barcelona, Spain
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1297
文摘
The restricted three body problem models the motion of a massless body under the influence of the Newtonian gravitational force caused by two other bodies called the primaries. When they move along circular Keplerian orbits and the third body moves in the same plane, one has the restricted planar circular three body problem (RPC3BP). In suitable coordinates, it is a Hamiltonian system of two degrees of freedom. The conserved energy is usually called the Jacobi constant. Llibre and Simó [Math Ann 248(2):153–184, 1980] proved the existence of oscillatory motions for this system. That is, orbits which leave every bounded region but which return infinitely often to some fixed bounded region. To prove their existence they had to assume the ratio between the masses of the primaries to be small enough. In this paper we prove the existence of such motions for any value of the mass ratio \(\mu \) closing the problem of existence of oscillatory motions in the RPC3BP. To obtain such motions, we restrict ourselves to the level sets of the Jacobi constant. We show that, for any value of the mass ratio and for large values of the Jacobi constant, there exist transversal intersections between the stable and unstable manifolds of infinity in these level sets. These transversal intersections guarantee the existence of a symbolic dynamics that creates the oscillatory orbits. The main achievement is to prove the existence of these orbits without assuming the mass ratio \(\mu \) small. When \(\mu \) is not small, this transversality can not be checked by means of classical perturbation theory. Since our method is valid for all values of \(\mu \), we are able to detect a curve in the parameter space, formed by \(\mu \) and the Jacobi constant, where cubic homoclinic tangencies between the invariant manifolds of infinity appear.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700