Effects of 3,5-Diiodotyrosine and Potassium Iodide on Thyroid Function and Oxidative Stress in Iodine-Excess Wistar Rats
详细信息    查看全文
  • 作者:Dan Liu ; Xinying Lin ; Fugui Yu ; Man Zhang…
  • 关键词:Potassium iodide ; 3 ; 5 ; diiodotyrosine ; Hyperthyroidism thyroid
  • 刊名:Biological Trace Element Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:168
  • 期:2
  • 页码:447-452
  • 全文大小:452 KB
  • 参考文献:1.Vanderpump M (2014) Thyroid and iodine nutritional status: a UK perspective. Clin Med 14(Suppl 6):s7鈥搒11. doi:10.鈥?861/鈥媍linmedicine.鈥?4-6-s7 CrossRef PubMed
    2.Delange F, Lecomte P (2000) Iodine supplementation: benefits outweigh risks. Drug Saf 22:89鈥?5CrossRef PubMed
    3.Leung AM, Braverman LE (2014) Consequences of excess iodine. Nat Rev Endocrinol 10:136鈥?42. doi:10.鈥?038/鈥媙rendo.鈥?013.鈥?51 PubMedCentral CrossRef PubMed
    4.Garcia-Fuentes E, Gallo M, Garcia L et al (2008) Amniotic fluid iodine concentrations do not vary in pregnant women with varying iodine intake. Br J Nutr 99:1178鈥?181. doi:10.鈥?017/鈥?s00071145078 62398 CrossRef PubMed
    5.Konno N, Yuri K, Taguchi H, Miura K et al (1993) Screening for thyroid diseases in an iodine sufficient area with sensitive thyrotrophin assays, and serum thyroid autoantibody and urinary iodide determinations. Clin Endocrinol (Oxf) 38:273鈥?81CrossRef
    6.Smyth PP (2003) Role of iodine in antioxidant defence in thyroid and breast disease. Biofactors 19(3鈥?):121鈥?30CrossRef PubMed
    7.Soriguer F, Gutierrez-Repiso C, Rubio-Martin E et al (2011) Iodine intakes of 100鈥?00 mug/d do not modify thyroid function and have modest anti-inflammatory effects. Br J Nutr 105(12):1783鈥?790. doi:10.鈥?017/鈥媠000711451000556鈥? CrossRef PubMed
    8.Kupper FC, Carpenter LJ, Leblanc C et al (2013) In vivo speciation studies and antioxidant properties of bromine in Laminaria digitata reinforce the significance of iodine accumulation for kelps. J Exp Bot 64(10):2653鈥?664. doi:10.鈥?093/鈥媕xb/鈥媏rt110 PubMedCentral CrossRef PubMed
    9.Doerge DR, Taurog A, Dorris ML (1994) Evidence for a radical mechanism in peroxidase-catalyzed coupling. II. Single turnover experiments with horseradish peroxidase. Arch Biochem Biophys 315(1):90鈥?9. doi:10.鈥?006/鈥媋bbi.鈥?994.鈥?475 CrossRef PubMed
    10.Aceves C, Anguiano B, Delgado G (2013) The extrathyronine actions of iodine as antioxidant, apoptotic, and differentiation factor in various tissues. Thyroid 23(23):938鈥?46. doi:10.鈥?089/鈥媡hy.鈥?012.鈥?0579 PubMedCentral CrossRef PubMed
    11.Fisher DA, Oddie TH (1969) Thyroidal radioiodine clearance and thyroid iodine accumulation: contrast between random daily variation and population data. J Clin Endocrinol Metab 29:111鈥?15. doi:10.鈥?210/鈥媕cem-29-1-111 CrossRef PubMed
    12.Trumbo PR (2013) Evidence needed to inform the next dietary reference intakes for iodine. Adv Nutr 4:718鈥?22. doi:10.鈥?945/鈥媋n.鈥?13.鈥?04804 PubMedCentral CrossRef PubMed
    13.Subudhi U, Das K, Paital B et al (2008) Alleviation of enhanced oxidative stress and oxygen consumption of L-thyroxine induced hyperthyroid rat liver mitochondria by vitamin E and curcumin. Chem Biol Interact 173:105鈥?14. doi:10.鈥?016/鈥媕.鈥媍bi.鈥?008.鈥?2.鈥?05 CrossRef PubMed
    14.Kumar N, Kar A, Panda S (2014) Pyrroloquinoline quinone ameliorates l-thyroxine-induced hyperthyroidism and associated problems in rats. Cell Biochem Funct 32:538鈥?46. doi:10.鈥?002/鈥媍bf.鈥?048 CrossRef PubMed
    15.Xia Y, Qu W, Zhao LN et al (2013) Iodine excess induces hepatic steatosis through disturbance of thyroid hormone metabolism involving oxidative stress in BALB/c mice. Biol Trace Elem Res 154:103鈥?10. doi:10.鈥?007/鈥媠12011-013-9705-9 CrossRef PubMed
    16.Ladenson PW, Kieffer JD, Farwell AP et al (1986) Modulation of myocardial L-triiodothyronine receptors in normal, hypothyroid, and hyperthyroid rats. Metabolism 35:5鈥?2CrossRef PubMed
    17.Araujo AS, Ribeiro MF, Enzveiler A et al (2006) Myocardial antioxidant enzyme activities and concentration and glutathione metabolism in experimental hyperthyroidism. Mol Cell Endocrinol 249:133鈥?39. doi:10.鈥?016/鈥媕.鈥媘ce.鈥?006.鈥?2.鈥?05 CrossRef PubMed
    18.Carter WJ, Benjamin WS, Faas FH (1982) Effects of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle as measured by [14C]tyrosine infusion. Biochem J 204:69鈥?4PubMedCentral CrossRef PubMed
    19.De La Vieja A, Dohan O, Levy O et al (2000) Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. Physiol Rev 80(3):1083鈥?105
    20.Mostbeck A, Galvan G, Bauer P et al (1998) The incidence of hyperthyroidism in Austria from 1987 to 1995 before and after an increase in salt iodization in 1990. Eur J Nucl Med 25(4):367鈥?74CrossRef PubMed
    21.Gao T, Shi R, Qi T et al (2014) A comparative study on the effects of excess iodine and herbs with excess iodine on thyroid oxidative stress in iodine-deficient rats. Biol Trace Elem Res 157:130鈥?37. doi:10.鈥?007/鈥媠12011-013-9873-7 CrossRef PubMed
    22.Joanta AE, Filip A, Clichici S et al (2006) Iodide excess exerts oxidative stress in some target tissues of the thyroid hormones. Acta Physiol Hung 93:347鈥?59. doi:10.鈥?556/鈥婣Physiol.鈥?3.鈥?006.鈥?.鈥?1 CrossRef PubMed
    23.Fernandez V, Barrientos X, Kipreos K et al (1985) Superoxide radical generation, NADPH oxidase activity, and cytochrome P-450 content of rat liver microsomal fractions in an experimental hyperthyroid state: relation to lipid peroxidation. Endocrinology 117:496鈥?01. doi:10.鈥?210/鈥媏ndo- 117-2-496 CrossRef PubMed
    24.Gutierrez-Repiso C, Velasco I, Garcia-Escobar E et al (2014) Does dietary iodine regulate oxidative stress and adiponectin levels in human breast milk? Antioxid Redox Signal 20(5):847鈥?53. doi:10.鈥?089/鈥媋rs.鈥?013.鈥?554 PubMedCentral CrossRef PubMed
    25.Glatt CM, Ouyang M, Welsh W et al (2005) Molecular characterization of thyroid toxicity: anchoring gene expression profiles to biochemical and pathologic end points. Environ Health Perspect 113(10):1354鈥?361PubMedCentral CrossRef PubMed
  • 作者单位:Dan Liu (1)
    Xinying Lin (1)
    Fugui Yu (2)
    Man Zhang (1)
    Hongxia Chen (3)
    Wei Bao (4)
    Xia Wang (5)

    1. Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People鈥檚 Republic of China
    2. Shandong food and drug administration, Jinan, Shandong, China
    3. Institution of Biomedicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
    4. Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
    5. Department of Maternal and Child Health Care, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, People鈥檚 Republic of China
  • 刊物主题:Biochemistry, general; Biotechnology; Nutrition; Oncology;
  • 出版者:Springer US
  • ISSN:1559-0720
文摘
The objective of this study was to investigate the effects of organic iodine (3,5-diiodotyrosine, DIT) and inorganic iodine (potassium iodine, KI) on thyroid function and oxidative stress in iodine-excess Wistar rats. Seventy-two Wistar rats were randomly divided into eight groups: normal control (NC), thyroid tablet-induced hyperthyroidism model (HM), low DIT (L-DIT), medium DIT (M-DIT), high DIT (H-DIT), low KI (L-KI), medium KI (M-KI), and high KI (H-KI). All rats were fed ad libitum for 30 days. Morphological changes in the thyroid, absolute and relative weights of the thyroid, thyroid function markers free triiodothyronine (FT3) and free thyroxine (FT4), urinary iodine level, and oxidative stress indicators were measured. Compared to the HM groups, the FT3 and FT4 levels decreased in the L-DIT groups; the thyroid weight and thyroid weight/body weight values decreased markedly in the L-DIT and M-DIT groups; serum superoxide dismutase/malondialdehyde increased markedly; glutathione peroxidase activity increased markedly in the L-DIT groups; and malondialdehyde levels decreased significantly in the M-DIT groups. However, the FT3 and FT4 levels decreased and glutathione peroxidase levels increased significantly in the DIT groups compared to their corresponding KI groups. Additionally, urinary iodine levels increased significantly in both DIT and KI groups, while the highest urinary iodine excretion was showed in the DIT groups among groups. When the addition of iodine with the same doses in iodine-excess rats, although neither DIT nor KI normalized iodine levels in the iodine-excess rats, the DIT did less damage than did KI to thyroid follicular cells. Therefore, DIT rather than KI had a protective effect by balancing the antioxidant system when exposed to supraphysiological iodine. These suggest that DIT may be used as a new alternative iodized salt in the universal salt iodization to avoid the potential damage of surplus KI. Keywords Potassium iodide 3,5-diiodotyrosine Hyperthyroidism thyroid

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700