Modeling of the lower ionospheric response and VLF signal modulation during a total solar eclipse using ionospheric chemistry and LWPC
详细信息    查看全文
  • 作者:Suman Chakraborty ; Sourav Palit ; Suman Ray…
  • 关键词:Ionosphere ; D ; region ; VLF ; Solar eclipse response ; Obscuration function ; Ionospheric disturbances
  • 刊名:Astrophysics and Space Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:361
  • 期:2
  • 全文大小:1,771 KB
  • 参考文献:Aleksandrov, N.L., Anokhin, E.M.: Low-energy electron attachment and detachment in vibrationally excited oxygen. J. Phys. D, Appl. Phys. 42, 225210 (2009). doi:10.​1088/​0022-3727/​42/​22/​225210 CrossRef ADS
    Aleksandrov, N.L., Anokhin E.M.: Electron detachment from O-2 ions in oxygen: the effect of vibrational excitation and the effect of electric field. J. Phys. B, At. Mol. Opt. Phys. 44, 115202 (2011). doi:10.​1088/​0953-4075/​44/​11/​115202 CrossRef ADS
    Appleton, E.V.: A note on the “sluggishness” of the ionosphere. J. Geophys. Res. 3(5), 282–284 (1953)
    Bailey, S.M.: Response of the Upper Atmosphere to Variations in the Solar Soft X-ray Irradiance, Dissertation. University of Colorado, Boulder (1995)
    Bracewell, R.N.: Theory of formation of an ionospheric layer below E layer based on eclipse and solar flare effects at 16 kc/sec. J. Atmos. Terr. Phys. 2, 226–235 (1952) CrossRef ADS
    Bohme, D.K.: Experimental studies of positive ion chemistry with flow-tube mass spectrometry: birth, evolution, and achievements in the 20th century. Int. J. Mass Spectrom. 200, 97–136 (2000) CrossRef ADS
    Buckmaster, H.A., Hansen, C.H.: 26 February 1979 total solar eclipse induced LF (60 kHz) phase retardation. J. Atmos. Terr. Phys. 48, 393–397 (1986) CrossRef ADS
    Budden, K.G.: The Wave-guide Mode Theory of Wave Propagation. Logos Press, London (1961)
    Chakrabarti, S.K., Sasmal, S., Pal, S., Mondal, S.K.: Results of VLF Campaigns in Summer, Winter and During Solar Eclipse in Indian Subcontinent and Beyond. AIP Conf. Proc, p. 1286. AIP, New York (2010)
    Chakrabarti, S.K., Pal, S., Sasmal, S., et al.: VLF Observational Results of Total Eclipse of 22nd July, 2009 by ICSP Team. IEEE Con. Publication, New York (2011) CrossRef
    Chakrabarti, S.K., Mondal, S.K., Sasmal, S., et al.: VLF signals in summer and winter in the Indian sub-continent using multi-station campaigns Indian. J. Phys. 86(5), 323–334 (2012)
    Chamberlain, J.W.: Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry. Academic, San Diego (1978)
    Chamberlain, J.W., Hunten, D.M.: Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry, 2nd edn. International Geophysics Series, vol. 36, p. 481. Academic Press Inc., Florida (1987)
    Chamberlin, P.C., Woods, T.N., Eparvier, F.G.: Flare irradiance spectral model (FISM): daily component algorithms and results. Space Weather 5, 07005 (2007). doi:10.​1029/​2007SW000316 CrossRef ADS
    Chapman, S.: The absorption and dissociative or ionizing effect of monochromatic radiation of an atmosphere on a rotating Earth. Proc. Phys. Soc. 43, 26–45 (1931) CrossRef ADS MATH
    Clilverd, M.A., Rodger, C.J., Thomson, N.R., et al.: Total solar eclipse effects on VLF signals: observations and modeling. Radio Sci. 36(4), 773 (2001) CrossRef ADS
    Ferguson: In: Laboratory Measurements of D-region Ion-molecule Reactions. Astrophysics and Space Science Library, vol. 25, pp. 188–197 (1971)
    Ferguson, J.A.: Computer programs for assessment of long-wavelength radio communications. Version 2.0. Technical document 3030, Space and Naval Warfare Systems Center, San Diego (1998)
    Florescu-Mitchell, A.I., Mitchell, J.B.A.: Dissociative recombination. Phys. Rep. 430(5–6), 277–374 (2006) CrossRef ADS
    Glukhov, V., Pasko, V., Inan, U.: Relaxation of transient lower ionospheric disturbances caused by lightning-whistler-induced electron precipitation. J. Geophys. Res. 97, 16,951–16,979 (1992) ADS
    Haldoupis, C., Mika, A., Sergey, S.: Modeling the relaxation of early VLF perturbations associated with transient luminous events. J. Geophys. Res. 114, A00E04 (2009). doi:10.​1029/​2009JA014313 CrossRef
    Hedin, A.E.: Extension of the MSIS Thermosphere Model into the middle and lower atmosphere. Geophys. Res. Lett. 96, 1159–1172 (1991) CrossRef
    Kelley, M.C.: The Earths Ionosphere, Plasma Physics and Electrodynamics, 2nd edn. Academic Press, San Diego (2009). Chap. 2.2
    Lehtinen, N.G., Inan, U.S.: Possible persistent ionization caused by giant blue jets. Geophys. Res. Lett. 34, L08804 (2007). doi:10.​1029/​2006GL029051 CrossRef ADS
    Lilensten, J., Blelly, P.-L.: Du Soleil à la Terre: Aéronomie et M’etéorologie de L’Espace. Presses Univ. de Grenoble, Grenoble (1999)
    Lynn, K.J.W.: The total solar eclipse of 23 October 1976, observed at VLF. J. Atmos. Terr. Phys. 43, 1309–1316 (1981) CrossRef ADS
    McGowan, S.: Ion–ion recombination coefficient: II. Measurement in oxygen nitrogen mixture. Can. J. Phys. 45(2), 439–448 (2011). doi:10.​1139/​p67-039 CrossRef ADS
    McNeil, W.J., Dressler, R.A., Murad, E.: Impact of a major meteor storm on Earth’s ionosphere: a modeling study. J. Geophys. Res. 106, 10,447–10,466 (2001) CrossRef ADS
    Mechtly, E.A., Sechrist, C.F., Smith, L.G.: Electron loss coefficients for the D-region of the ionosphere from rocket measurements during the eclipses of March 1970 and November 1966. J. Atmos. Terr. Phys. 34, 641–646 (1972) CrossRef ADS
    Mecwan, M.J., Philips, L.F.: Chemistry of the Atmosphere. Edward Arnold Ltd., London (1975)
    Mendes da Costa, A., Rizzo Piazza, L., Leme, P., Lower, N.M.: Ionosphere effect observed during the 30 June 1992 total solar eclipse. J. Atmos. Terr. Phys. 57, 13–17 (1995) CrossRef ADS
    Milligan, R.O., Chamberlin, P.C., Hudson, H.S., Thomas, N.W., Mathioudakis, M., Fletcher, L., Kowalski, A.F., Keenan, F.P.: Observation of enhanced EUV continua during an X-class solar flare using SDO/EVE. Astrophys. J. 748, L14 (2012) CrossRef ADS
    Mitra, A.P.: The D-layer of the ionosphere. J. Geophys. Res. 56(3), 373–402 (1951) CrossRef ADS
    Mitra, A.P., Jones, R.E.: Recombination in the lower ionosphere. J. Geophys. Res. 59(3), 323–328 (1954) CrossRef
    Mitra, A.P.: Recombination in the Ionosphere Advance in Upper Atmospheric Research, pp. 57–87. Ed Landmark, London (1963)
    Mitra, A.P.: A review of D-region processes in non-polar latitudes. J. Atmos. Terr. Phys. 30(6), 1065–1114 (1968) ADS
    Mitra, A.P.: D region in disturbed condition, including flares and energetic particles. J. Atmos. Terr. Phys. 37, 895 (1975) CrossRef ADS
    Mitra, A.P.: Chemistry of middle atmospheric ionization-a review. J. Atmos. Terr. Phys. 43(8), 737–752 (1981). ISSN 0021-9169 CrossRef ADS
    Möllmann, K.P., Vollmer, M.: Measurements and predictions of the illuminance during a solar eclipse. Eur. J. Phys. 27, 1299–1314 (2006) CrossRef
    Ohshio, M., Maeda, R., Sakagami, H.: J. Radio Res. Lab. 13, 245 (1966)
    Ohya, H., Tsuchiya, F., Nakata, H., Shiokawa, K., Miyoshi, Y., Yamashita, K., Takahashi, Y.: Reflection height of daytime tweek atmospherics during the solar eclipse of 22 July 2009. J. Geophys. Res. (2012). doi:10.​1029/​2012JA018151
    Pal, S., Chakrabarti, S.K., Mondal, S.K.: Modeling of sub-ionospheric VLF signal perturbations associated with total solar eclipse, 2009 Indian subcontinent. Adv. Space Res. 50, 196–204 (2012) CrossRef ADS
    Palit, S., Basak, T., Pal, S., Chakrabarti, S.K.: Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry. Atmos. Chem. Phys. 13, 9159–9168 (2013). doi:10.​5194/​acp-13-9159-2013 CrossRef ADS
    Palit, S., Basak, T., Pal, S., Chakrabarti, S.K.: Theoretical study of lower ionospheric response to solar flares: sluggishness of D-region and peak time delay. Astrophys. Space Sci. 355, 2190 (2014). doi:10.​1007/​s1050901421906
    Pasko, V.P., Inan, U.S.: Recovery signatures of lightning-associated VLF perturbations as a measure of the lower ionosphere. J. Geophys. Res. 99(A9), 17,523–17,537 (1994) CrossRef ADS
    Pasko, V.P., Inan, U.S., Bell, T.F., Tararenko, Y.N.: Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res. 102, 4529–4561 (1997) CrossRef ADS
    Phelps, A.V.: Laboratory studies of electron attachment and detachment processes of aeronomic interest. Can. J. Chem. 47, 1783 (1969) CrossRef
    Rawer, K., Bilitza, D., Ramakrishnan, S.: Goals and status of the international reference ionosphere. Rev. Geophys. 16, 177–181 (1978) CrossRef ADS
    Rees, M.H.: Physics and Chemistry of the Upper Atmosphere. Cambridge University Press, Cambridge (1989) CrossRef
    Reich, P.J.: Ionospheric response to solar flares using an improved version of SAMI2. Thesis. Air force institute of technology, Ohio (2008)
    Rodger, C.J., Molchanov, O.A., Thomson, N.R.: Relaxation of transient ionization in the lower ionosphere. J. Geophys. Res. Space Phys. 103(A4), 6969–6975 (1998) CrossRef ADS
    Rowe, J.N., Mitra, A.P., Ferraro, A.J., Lee, H.S.: An experimental and theoretical study of the D-region—II. A semi-empirical model for mid-latitude D-region. J. Atmos. Sol.-Terr. Phys. 36, 755–785 (1974) CrossRef ADS
    Rowe, B.R., Mitchell, J.B.A., Canosa, A.: Dissociative Recombination: Theory, Experiment, and Application. NATO ASI Series B: Physics, vol. 313, pp. 135–143. Plenum Press, New York (1993)
    Ryding, M.J.: Experimental Studies of Cluster Ions Containing Water, Ammonia, Pyridine and Bisulphate: Thesis. University of Gothenburg, Sweden (2011)
    Schmitter, E.D.: Remote sensing planetary waves in the midlatitude mesosphere using low frequency transmitter signals. Ann. Geophys. 29, 1287–1293 (2011). doi:10.​5194/​angeo-29-1287-2011 CrossRef ADS
    Schunk, R.W., Nagy, A.F.: Ionospheres of the terrestrial planets. Rev. Geophys. 18, 813–851 (1980) CrossRef ADS
    Schunk, R.W., Nagy, A.F.: Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge Univ. Press, New York (2000) CrossRef
    Sengupta, A., Goel, G.K., Mathur, B.S.: Effect of the 16 February 1980 solar eclipse on VLF propagation. J. Atmos. Terr. Phys. 42, 907 (1980) CrossRef ADS
    Sheehan, C.H.: Dissociative recombination of \(N_{2}^{+} \) , \(O_{2}^{+}\) , and \(\mathit{NO}^{+}\) : rate coefficients for ground state and vibrationally excited ions. J. Geophys. Res. 109, A03302 (2004). doi:10.​1029/​2003JA010132 CrossRef ADS
    Singh, A.K., Singh, R., Veenadharic, B., Singh, A.K.: Response of low latitude D-region ionosphere to the total solar eclipse of 22 July 2009 deduced from ELF/VLF analysis. Adv. Space Res. 50(10), 1352–1361 (2012) CrossRef ADS
    Solomon, S.C., Qian, L.: Solar extreme-ultraviolet irradiance for general circulation models. J. Geophys. Res. 110(A10), 10,306 (2005) CrossRef
    Thomson, N.R., Clilverd, M.A., McRae, W.M.: Nighttime ionospheric D region parameters from VLF phase and amplitude. J. Geophys. Res. 112(A7), A07304 (2007). doi:10.​1029/​2007JA012271 ADS
    Torr, M.R., Torr, D.G., Ong, R.A., Hinteregger, H.E.: Geophys. Res. Lett. 6, 771 (1979) CrossRef ADS
    Torr, M.R., Torr, D.G.: Ionization frequency for solar cycle 21: revised. J. Geophys. Res. 90, 6675 (1985) CrossRef ADS
    Tsurutani, B.T., Judge, D.L., Guarnieri, F.L., Gangopadhyay, P., Jones, A.R., Nuttall, J., Zambon, G.A., Didkovsky, L., Mannucci, A.J., Iijima, B., Meier, R.R., Immel, T.J., Woods, T.N., Prasad, S., Floyd, L., Huba, J., Solomon, S.C., Straus, P., Viereck, R.: The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: comparison to other Halloween events and the Bastille day event. Geophys. Res. Lett. 32, L03S09 (2005). doi:10.​1029/​2004GL021475 CrossRef
    Turunen, E., Matveinen, H., Ranta, H.: Sodankyla Ion Ccemistry(SIC) model Sodankyla Geophysical Observatory. Report No. 49. Sodankyla, Finland (1992)
    Ulwick, J.C.: Eclipse rocket measurements of charged of particle concentrations. J. Atmos. Terr. Phys. 34, 659–665 (1972) CrossRef ADS
    Wait, J.R., Spies, K.P.: Characteristics of the Earth-Ionosphere waveguide for VLF radio waves. NBS Tech Note. U.S. 300 (1964)
    Woods, T.N., Rottman, G.J.: Solar ultraviolet variability over the time periods of aeronomic interest. In: Atmospheres in the Solar System: Comparative Aeronomy. Geophysical Monogram, vol. 130 (2002). doi:10.​1029/​130GM14 . AGU
    Yonezawa, T.: Theory of formation of the ionosphere. Space Sci. Rev. 5, 3–56 (1966) CrossRef ADS
    Zhang, S.R., Oliver, W.L., Fukao, S., Otsuka, Y.: A study of the forenoon ionospheric F2 layer behavior over the middle and upper atmospheric radar. J. Geophys. Res. 105, 15,823–15,833 (2000) CrossRef ADS
    Zigman, V., Grubor, D., Sulic, D.: D-region electron density evaluated from VLF amplitude time delay during X-ray solar flares. J. Atmos. Terr. Phys. 69, 775–792 (2007) CrossRef ADS
  • 作者单位:Suman Chakraborty (1)
    Sourav Palit (1)
    Suman Ray (1)
    Sandip K. Chakrabarti (1) (2)

    1. Indian Centre for Space Physics, 43 Chalantika, Garia Station Road, Kolkata, 700084, India
    2. S N Bose National Centre for Basic Sciences, JD Block, Salt lake, Kolkata, 700098, India
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
  • 出版者:Springer Netherlands
  • ISSN:1572-946X
文摘
The variation in the solar Extreme Ultraviolet (EUV) radiation flux by any measure is the most dominant natural source to produce perturbations or modulations in the ionospheric chemical and plasma properties. A solar eclipse, though a very rare phenomenon, is similarly bound to produce a significant short time effect on the local ionospheric properties. The influence of the ionizing solar flux reduction during a solar eclipse on the lower ionosphere or, more precisely, the D-region, can be studied with the observation of Very Low Frequency (VLF) radio wave signal modulation. The interpretation of such an effect on VLF signals requires a knowledge of the D-region ion chemistry, which is not well studied till date. Dominant parameters which govern the ion chemistry, such as the recombination coefficients, are poorly known. The occurrence of events such as a solar eclipse provides us with an excellent opportunity to investigate the accuracy of our knowledge of the chemical condition in this part of Earth’s atmosphere and the properties which control the ionospheric stability under such disturbances. In this paper, using existing knowledge of the lower ionospheric chemical and physical properties we carry out an interpretation of the effects obtained during the total solar eclipse of 22 of July 2009 on the VLF signal. Data obtained from a week long campaign conducted by the Indian Centre for Space Physics (ICSP) over the Indian subcontinent has been used for this purpose. Both positive and negative amplitude changes during the eclipse were observed along various receiver locations. In this paper, data for a propagation path between a Indian Navy VLF transmitter named VTX3 and a pair of receivers in India are used. We start from the observed solar flux during the eclipse and calculate the ionization during the whole time span over most of the influenced region in a range of height. We incorporate a D-region ion-chemistry model to find the equilibrium ion density over the region and employ the LWPC code to find the VLF signal amplitude. To tackle the uncertainty in the values of the recombination coefficients we explore a range of values in the chemical evolution model. We achieve two goals by this exercise: First, we have been able to reproduce the trends, if not the exact signal variation, of the VLF signal modulations during a solar eclipse at two different receiving stations with sufficient accuracy purely from theoretical modeling, and second our knowledge of some of the D-region ion-chemistry parameters is now improved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700