Microwave dielectric properties of Ga3+ and Ta5+ co-doped CaTiO3
详细信息    查看全文
  • 作者:Raz Muhammad ; Yaseen Iqbal
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:6
  • 页码:2958-2963
  • 全文大小:688 KB
  • 参考文献:1.Sebastian M, Ubic R, Jantunen H (2015) Low-loss dielectric ceramic materials and their properties. Int Mater Rev. doi:10.​1179/​1743280415Y.​0000000007
    2.Muhammad R, Iqbal Y, Reaney I (2015) Structure and microwave dielectric properties of La5 − xSrxTi4 + xGa1 − xO17 ceramics. J Mater Sci 50:3510–3516. doi:10.​1007/​s10853-015-8914-3
    3.Mirsaneh M, Zalinska B, Leisten OP, Reaney IM (2008) Bismuth niobate-based glass-ceramics for dielectrically loaded microwave antennas. Funct Mater Lett 1:25–30CrossRef
    4.Narang SB, Bahel S (2010) Low loss dielectric ceramics for microwave applications: a review. J Ceram Proc Res 11:316–321
    5.Reaney IM, Iddles D (2006) Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceram Soc 89:2063–2072
    6.Wise P, Reaney I, Lee W, Price T, Iddles D, Cannell D (2001) Structure-microwave property relations in (SrxCa(1 − x))n + 1TinO3n + 1. J Eur Ceram Soc 21:1723–1726CrossRef
    7.Fu M, Liu X, Chen X, Zeng Y (2008) Microstructure and microwave dielectric properties of (1 − x)Ca (Mg1/3Ta2/3)O3/xCaTiO3 ceramics. J Am Ceram Soc 91:1163–1168CrossRef
    8.Liang F, Feng S, Lu W, Wan Q, Fan G (2014) Effects of A-site La3+ substitution by Nd3+ on microwave dielectric properties and microstructure of CaTiO3–La(Ga0.5Al0.5)O3 ceramics. J Alloys Compd 613:128–131CrossRef
    9.Nenasheva E, Mudroliubova L, Kartenko N (2003) Microwave dielectric properties of ceramics based on CaTiO3–LnMO3 System (Ln–La, Nd; M–Al, Ga). J Eur Ceram Soc 23:2443–2448CrossRef
    10.Muhammad R, Iqbal Y (2015) Microwave dielectric properties of CaTi1 − x(Nb0.5Ga0.5)xO3 ceramics. Mater Lett 153:121–123CrossRef
    11.Kageyama K (1990) Microwave dielectric properties of CaO-Ga2O3-Ta2O5 ceramics. Ferroelectrics 109:173–178CrossRef
    12.PANalytical B (2002) X’Pert HighScore Plus. X’Pert HighScore Plus, Lelyweg, Almelo, the Netherlands 2
    13.Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sec A 32:751–767CrossRef
    14.Zheng H, Bagshaw H, Csete de Gyorgyfalva G, Reaney I, Ubic R, Yarwood J (2003) Raman spectroscopy and microwave properties of CaTiO3-based ceramics. J Appl Phys 94:2948–2956CrossRef
    15.Qin S, Wu X, Seifert F, Becerro AI (2002) Micro-Raman study of perovskites in the CaTiO3–SrTiO3 system. J Chem Soc Dalton Trans 19(19):3751–3755CrossRef
    16.Zheng H, Woodward DI, Gillie L, Reaney IM (2006) Structure and microwave dielectric properties of BaLa4Ti4O15. J Phys 18:7051–7062
    17.Ubic R, Reaney IM (2002) Structure and dielectric properties of lead pyrochlores. J Am Ceram Soc 85:2472–2478CrossRef
    18.Shannon RD (1993) Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 73:348–366CrossRef
    19.Muhammad R, Iqbal Y, Rambo C, Khan H (2014) Research trends in microwave dielectrics and factors affecting their properties: a review. Int J Mater Res 105:431–439CrossRef
    20.Colla E, Reaney I, Setter N (1993) Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity. J Appl Phys 74:3414–3425CrossRef
    21.Reaney IM, Colla EL, Setter N (1994) Dielectric and structural characteristics of Ba-and Sr-based complex perovskites as a function of tolerance factor. Jpn J Appl Phys 33:3984CrossRef
    22.Lyu X-S, Li L-X, Sun H, Zhang S, Li S (2015) High-Q microwave dielectrics in wolframite magnesium zirconium tantalate ceramics. Ceram Int 42:2036–2040CrossRef
    23.Lei W, Lu WZ, Wang XH, Liang F, Wang J (2011) Phase composition and microwave dielectric properties of ZnAl2O4–CO2TiO4 low-permittivity ceramics with high quality factor. J Am Ceram Soc 94:20–23CrossRef
    24.Koga E, Moriwake H, K-i Kakimoto, Ohsato H (2006) Synthesis of disordered Ba(Zn1/3Ta2/3)O3 by spark plasma sintering and its microwave Q factor. Jpn J Appl Phys 45:7484CrossRef
    25.Koga E, Yamagishi Y, Moriwake H, Kakimoto K, Ohsato H (2006) Order-disorder transition and its effect on microwave quality factor Q in Ba(Zn1/3Nb2/3)O3 system. J Electroceram 17:375–379CrossRef
    26.Freer R, Azough F (2008) Microstructural engineering of microwave dielectric ceramics. J Eur Ceram Soc 28:1433–1441CrossRef
    27.Muhammad R, Iqbal Y, Rambo CR (2015) Structure–property relationship in NaCa4B5O17 (B = Nb, Ta) perovskites. J Mater Sci 26:2161–2166. doi:10.​1007/​s10854-014-2662-z
  • 作者单位:Raz Muhammad (1) (2)
    Yaseen Iqbal (2)

    1. Department of Physics, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
    2. Materials Research Laboratory, Department of Physics, University of Peshawar, Peshawar, 25120, Pakistan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Compositions in the (1 − talic ">x)CaTiO3talic ">xCa(Ta1/2Ga1/2)O3 (x = 0.4, 0.45, 0.50, 0.55) series were processed through a solid-state mixed-oxide route. X-ray diffraction (XRD) of x = 0.5 and 0.55 compositions revealed the formation of single-phase ceramics with orthorhombic (Pbnm) symmetry. At x ≤ 0.45, a couple of low intensity XRD peaks matching PDF# 04-002-5066 for Ca3TiTaGa3O12 were also observed which indicated second-phase formation. The microstructure of the sintered pellets for x = 0.5 and 0.55 compositions comprised densely packed irregular-shaped large grains with uniform contrast. The unit cell volume increased with increasing Ta5+ and Ga3+ contents at the B-site, which caused a decrease in both the relative permittivity (ε r) and temperature coefficient of resonance frequency (τ f) but an increase in quality factor (Q × f o). The optimum microwave dielectric properties (i.e., ε r ~ 47, Q × f o ~ 26,630 GHz and τ f ~ −2.64 ppm/ °C) were achieved for the x = 0.5 composition (i.e., CaTi0.5Ta0.25Ga0.25O3) which can be a potential candidate material for microwave dielectric applications. Thus, the substitution of Ta and Ga at the B-site of CaTiO3 was useful in tuning the larger positive τ f through zero and increasing Q × f o without too much compromise on ε r.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700