Prediction and uncertainty propagation of correlated time-varying quantities using surrogate models
详细信息    查看全文
  • 作者:I. Tartaruga ; J. E. Cooper ; M. H. Lowenberg ; P. Sartor…
  • 关键词:Correlated loads ; Prediction ; Uncertainty quantification ; Surrogate models ; Singular value decomposition ; Kriging surrogates
  • 刊名:CEAS Aeronautical Journal
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:7
  • 期:1
  • 页码:29-42
  • 全文大小:2,645 KB
  • 参考文献:1.Wright, J.R., Cooper, J.E.: Introduction to Aircraft Aeroelasticity and Loads. Wiley, London (2007)CrossRef
    2.Khodaparast, H.H., Georgiou, G., Cooper, J.E., Travaglini, L., Ricci, S., Vio, G.A., Denner, P.: Rapid prediction of worst case gust loads. J. Aeroelast. Struct. Dyn. 2(3), 33–54 (2012)
    3.Khodaparast, H.H., Georgiou, G., Cooper, J.E., Travaglini, L., Ricci, S., Denner, P., Vio, G.A.: Efficient worst case ‘1—cosine’ gust loads prediction, IFASD. Paris, France (2011)
    4.Khodaparast, H.H., Cooper, J.E.: Rapid prediction of worst case gust loads following structural modification. AIAA Journal 52(2), 242–254 (2014)CrossRef
    5.Khodaparast, H.H., Cooper, J.E., Cavagna, L., Ricci, S., Riccobene, L.: Fast prediction of worst case gust loads. In: IFASD Scientific Committee Conference. International Forum on Aeroelasticity & Structural Dynamics, Bristol, UK (2013)
    6.Choi, S.K., Grandi, R.V., Canfield, R.A.: Reliability-based Structural Design. Springer-Verlag, London (2010)
    7.Xiu, D., Karniadakis, G.E.: The wiener-askey polynomial chaos for stochastic differential equations. Soc Ind. Appl. Math. J. Sci. Comput. (SIAM J.Sci) 24(2), 619–644 (2002)MathSciNet MATH
    8.Eldred, M.S.: Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In: 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and material conference, Palm Springs, California, 4–7 May 2009
    9.Georgiou, G., Manan, A., Cooper, J.E.: Modeling composite wing aeroelastic behaviour with uncertain damage severity and material properties. Mech. Syst. Signal Process. 32, 32–43 (2012)CrossRef
    10.Badcock, K.J., Khodaparast, H.H., Timme, S., Mottershead, J.E.: Calculating the influence of structural uncertainty on aeroelastic limit cycle response. In: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics, and materials conference, Denver, Colorado, 4–8 Apr 2011
    11.Scarth, C., Cooper, J.E., Weaver, P.M., Silva, G.H.C.: Uncertainty quantification of aeroelastic stability of composite plate wings using lamination parameters. Compos. Struct. 116, 84–93 (2014)CrossRef
    12.Choi, S.K., Grandhi, R.V., Canfield, R. A., Pettit, C.L.: Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J. 42(6), 1191–1198 (2004)CrossRef
    13.Pettit, C.L.: Uncertainty quantification in aeroelasticity: recent results and research challenges. J. Aircr. 41(5), 1217–1229 (2004)CrossRef
    14.Ouyang, Q., Chen, X., Cooper, J.E.: Robust aeroelastic analysis and optimization of composite wing under μ-analysis framework. J. Aircr. 50, 1299–1305 (2013)CrossRef
    15.Albano, E., Rodden, W.P.: A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. AIAA J. 7(2), 279–285 (1969)CrossRef MATH
    16.Airworthiness standards part 25: transport category airplanes, subpart C, structure, flight maneuver and gust conditions. (§25.333 flight maneuvering envelope, §25.341 gust and turbulence loads), 6 Nov 2014. http://​flightsimaviatio​n.​com/​data/​FARS/​part_​25.​html
    17.Worden, K., Staszewski, W.J., Hensman, J.J.: Natural computing for mechanical systems research: a tutorial overview. Mech. Syst. Signal Process. 25(1), 4–111 (2011)CrossRef
    18.Helton, J.C., Davis, F.J.: Sampling-Based Methods for Uncertainty and Sensitivity Analysis, SAND99-2240. Sandia National Laboratories, Albuquerque (2000)CrossRef
    19.Manan, A., Cooper, J.E.: Design of composite wings including uncertainties—a probabilistic approach. J Aircr. 46(2), 601–607 (2009)CrossRef
    20.Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. John Hopkins Press, Baltimore (1989)MATH
    21.Gemulla, R., Miettinen, P.: Data mining and matrices, singular value decomposition, April 25, 2013. http://​resources.​mpi-inf.​mpg.​de/​d5/​teaching/​ss13/​dmm/​slides/​03-svd-handout.​pdf . downloaded in May 2014
    22.Sarkar, S., Dong, A., Gero, J. S.: Design optimization problem reformulation using singular value decomposition. J. Mech. Des. 131(8), 081006 (2009)CrossRef
    23.McGuinness, S., Armstrong, C.G., Murphy, A., Barron, J., Hockenhull, M.: Improving aircraft stress-loads evaluation and optimization procedures. In: 2nd Aircraft structural design conference, London, United Kingdom, (2010)
    24.Forrester, A., Sóbester, A., Keane, A.: Engineering Design via Surrogate Modelling: a practical guide. Wiley, Chichester (2008)CrossRef
    25.Couckuyt, I., Dhaene, T., Demeester, P.: ooDACE toolbox, a matlab kriging toolbox: getting started. http://​www.​sumo.​intec.​ugent.​be/​sites/​sumo/​files/​gettingstarted.​pdf (2013)
    26.Joseph, V.R., Hung, Y., Sudjianto A.: Blind kriging: a new method for developing metamodels. ASME J. Mech. Des. 130, 031102-1–031102-8 (2008)CrossRef
    27.Couckuyt, I., Forrester, A., Gorissen, D., De Turck, F., Dhaene, T.: Blind kriging: implementation and performance analysis. Adv. Eng. Softw. 49, 1–13 (2012)CrossRef
    28.Couckuyt, I., Declercq, F., Dhaene, T., Rogier, H., Knockaert, L.: Surrogate-based infill optimization applied to electromagnetic problems. Spec. Issue Adv. Des. Optim. Microw./RF Circuits Syst. 20(5), 492–501 (2010)
    29.Georgiou, G., Khodaparast, H.H., Cooper J.E.: Uncertainty quantification of aeroelastic stability. In: Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems. IGI Global, pp. 329–356 (2014)
    30.Martin, J.D., Simpson T.W.: On the use of kriging models to approximate deterministic computer models. In: Proceedings of DETC’04: ASME 2004 international design engineering technical conference and computer and information in engineering conference, Salt Lake City, Utah USA, Sept 28–Oct 2 2004
    31.StatSoft, Inc. (2013). Electronic Statistics Textbook. Tulsa, OK: StatSoft. WEB: http://​www.​statsoft.​com/​textbook/​
    32.Tong, M.T.: A probabilistic approach to aeropropulsion system assessment, NASA Technical Reports Server NASA/TM-2000-210334, Glenn Research Center, Cleveland, Ohio, USA. http://​ntrs.​nasa.​gov/​archive/​nasa/​casi.​ntrs.​nasa.​gov/​20000056043.​pdf
  • 作者单位:I. Tartaruga (1)
    J. E. Cooper (1)
    M. H. Lowenberg (1)
    P. Sartor (1)
    S. Coggon (2)
    Y. Lemmens (3)

    1. Department of Aerospace Engineering, University of Bristol, Queens Building, University Walk, Bristol, BS8 1TR, UK
    2. Airbus Operations Ltd, Filton, Bristol, UK
    3. Siemens, 3001, Louvain, Belgium
  • 刊物主题:Aerospace Technology and Astronautics;
  • 出版者:Springer Vienna
  • ISSN:1869-5590
文摘
The identification of correlated quantities is of particular interest in several fields of engineering and physics, for example in the development of reliable structural designs. When ‘time-varying’ quantities are analysed, pairs of correlated interesting quantities (IQs), e.g. bending moments, torques, etc., can be displayed by plotting them against each other, and the critical conditions determined by the extreme values of the envelope (convex hull). In this paper, a reduced order singular value-based modelling technique is developed that enables a fast computation of the correlated loads envelope for systems where the effect of variation of design parameters needs to be considered. The approach is extended to efficiently quantify the effects of uncertainty in the system parameters. The effectiveness of the method is demonstrated by consideration of the gust loads occurring from the aeroelastic numerical model of a civil jet airliner.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700