Improved bioethanol production from corn stover by alkali pretreatment with a novel pilot-scale continuous microwave irradiation reactor
详细信息    查看全文
  • 作者:Huadong Peng (1)
    Hao Luo (1) (2)
    Shengying Jin (3)
    Hongqiang Li (1)
    Jian Xu (1)
  • 关键词:corn stover ; continuous microwave irradiation reactor ; biomass pretreatment ; response surface methodology ; cellulosic ethanol
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:19
  • 期:3
  • 页码:493-502
  • 全文大小:1,128 KB
  • 参考文献:1. Binod, P., K. Satyanagalakshmi, R. Sindhu, K. U. Janu, R. K. Sukumaran, and A. Pandey (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. / Renew. Energ. 37: 109鈥?16. CrossRef
    2. Li, J., F. Sun, X. Li, Z. Yan, Y. Yuan, and X. Liu (2012) Enhanced saccharification of corn straw pretreated by alkali combining crude ligninolytic enzymes. / J. Chem. Technol. Biot. 87: 1687鈥?693. CrossRef
    3. Chen, C., D. Boldor, G. Aita, and M. Walker (2012) Ethanol production from sorghum by microwave-assisted dilute ammonia pretreatment. / Bioresour. Technol. 110: 190鈥?97. CrossRef
    4. Chandra, R., H. Takeuchi, T. Hasegawa, and R. Kumar (2012) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. / Energ. 43: 273鈥?82. CrossRef
    5. Sanchez, C., L. Serrano, M. A. Andres, and J. Labidi (2013) Furfural production from corn cobs autohydrolysis liquors by microwave technology. / Ind. Crop. Prod. 42: 513鈥?19. CrossRef
    6. Han, M., S. K. Moon, Y. Kim, Y. Kim, B. Chung, and G. W. Choi (2009) Bioethanol production from ammonium percolated wheat straw. / Biotechnol. Bioproc. Eng. 14: 606鈥?11. CrossRef
    7. Chundawat, S. P., B. S. Donohoe, L. da Costa Sousa, T. Elder, U. P. Agarwal, F. Lu, J. Ralph, M. E. Himmel, V. Balan, and B. E. Dale (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. / Energ. Environ. Sci. 4: 973鈥?84. CrossRef
    8. Lu, J., R. R. Weerasiri, Y. Liu, W. Wang, S. Ji, and I. Lee (2013) Enzyme production by the mixed fungal culture with nano-shear pretreated biomass and lignocellulose hydrolysis. / Biotechnol. Bioeng. 110: 2123鈥?130. CrossRef
    9. Puri, V. P. (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. / Biotechnol. Bioeng. 26: 1219鈥?222. CrossRef
    10. Janker-Obermeier, I., V. Sieber, M. Faulstich, and D. Schieder (2012) Solubilization of hemicellulose and lignin from wheat straw through microwave-assisted alkali treatment. / Ind. Crop. Prod. 39: 198鈥?03. CrossRef
    11. Keshwani, D. R. and J. J. Cheng (2010) Modeling changes in biomass composition during microwave-based alkali pretreatment of switchgrass. / Biotechnol. Bioeng. 105: 88鈥?7. CrossRef
    12. Velmurugan, R. and K. Muthukumar (2012) Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. / Bioresour. Technol. 112: 293鈥?99. CrossRef
    13. Li, H. and J. Xu (2013) Optimization of microwave-assisted calcium chloride pretreatment of corn stover. / Bioresour. Technol. 127: 112鈥?18. CrossRef
    14. Peng, H., H. Li, H. Luo, and J. Xu (2013) A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose. / Bioresour. Technol. 130: 81鈥?7. CrossRef
    15. Xu, J., H. Chen, Z. K谩d谩r, A. B. Thomsen, J. E. Schmidt, and H. Peng (2011) Optimization of microwave pretreatment on wheat straw for ethanol production. / Biomass Bioenerg. 35: 3859鈥?864. CrossRef
    16. Li, H. and J. Xu (2013) A new correction method for determination on carbohydrates in lignocellulosic biomass. / Bioresour. Technol. 138: 373鈥?76. CrossRef
    17. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker (2008) / Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Procedure.
    18. L眉, J. and P. Zhou (2011) Optimization of microwave-assisted FeCl3 pretreatment conditions of rice straw and utilization of / Trichoderma viride and / Bacillus pumilus for production of reducing sugars. / Bioresour. Technol. 102: 6966鈥?971. CrossRef
    19. Mosier, N., R. Hendrickson, M. Brewer, N. Ho, M. Sedlak, R. Dreshel, G. Welch, B. Dien, and A. Aden (2005) Ladisch M. Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. / Appl. Biochem. Biotech. 125: 77鈥?7. CrossRef
    20. Pedersen, M. and A. S. Meyer (2010) Lignocellulose pretreatment severity-relating pH to biomatrix opening. / New Biotechnol. 27: 739鈥?50. CrossRef
    21. Diaz, M. J., W. J. J. Huijgen, R. R. van der Laan, J. H. Reith, C. Cara, and E. Castro (2011) Organosolv pretreatment of olive tree biomass for fermentable sugars. / Holzforschung 65: 177鈥?83. CrossRef
    22. Kabel, M. A., G. Bos, J. Zeevalking, A. G. Voragen, and H. A. Schols (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. / Bioresour. Technol. 98: 2034鈥?042. CrossRef
    23. Palmqvist, E. and B. Hahn-H盲gerdal (2000) Fermentation of lignocellulosic hydrolysates II: Inhibitors and mechanisms of inhibition. / Bioresour. Technol. 74: 25鈥?3. CrossRef
    24. Cao, G., W. Guo, A. Wang, L. Zhao, C. Xu, Q. Zhao, and N. Ren (2012) Enhanced cellulosic hydrogen production from limetreated cornstalk wastes using thermophilic anaerobic microflora. / Int. J. Hydrogen Energ. 37: 13161鈥?3166. CrossRef
    25. Kim, S. and M. T. Holtzapple (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. / Bioresour. Technol. 96: 1994鈥?006. CrossRef
    26. Chang, V. S. and M. T. Holtzapple (2000) Fundamental factors affecting biomass enzymatic reactivity. / Appl. Biochem. Biotech. 84: 5鈥?7. CrossRef
    27. Yu, Y. and H. W. Wu (2011) Effect of ball milling on the hydrolysis of microcrystalline cellulose in hot-compressed water. / AIChE J. 57: 793鈥?00. CrossRef
    28. Yuan, L., Z. Chen, Y. Zhu, X. Liu, H. Liao, and D. Chen (2012) One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus / penicillium simplicissimum treatment. / Appl. Biochem. Biotech. 167: 39鈥?1. CrossRef
    29. Bak, J. S., J. K. Ko, Y. H. Han, B. C. Lee, I. G. Choi, and K. H. Kim (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. / Bioresour. Technol. 100: 1285鈥?290. CrossRef
    30. Ko, J. K., J. S. Bak, M. W. Jung, H. J. Lee, I. G. Choi, T. H. Kim, and K. H. Kim (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. / Bioresour. Technol. 100: 4374鈥?380. CrossRef
  • 作者单位:Huadong Peng (1)
    Hao Luo (1) (2)
    Shengying Jin (3)
    Hongqiang Li (1)
    Jian Xu (1)

    1. National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100-190, China
    2. University of Chinese Academy of Sciences, Beijing, 100-049, China
    3. Petrochina Planning and Engineering Institute, Beijing, 100-049, China
  • ISSN:1976-3816
文摘
A novel continuous microwave irradiation (MWI) pilot-scale reactor was designed specifically for biomass pretreatment. To test the efficiency of this reactor, MWI-assisted alkali pretreatment of corn straw (CS) was investigated using a central composite design for the response surface methodology. With a processing capacity of 0.28 kg CS (dry matter, DM)/h, the optimal conditions were as follows: 4.50 kW, 30 min, and 3.50% NaOH (w/v). The glucose and ethanol production from the pretreated CS were 63.22 and 31.29 g/100 g DM, respectively. These values were 4.42 and 3.79 times higher, respectively, than those from untreated CS. Structural changes in the untreated/pretreated CS were identified by analyzing its chemical composition using X-ray diffraction (XRD), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). In addition, the solid residue recovery ratio was demonstrated to be an indicator of the biomass bioconversion potential.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700