A Comparison of Bimolecular Reaction Models for Stochastic Reaction–Diffusion Systems
详细信息    查看全文
  • 作者:I. C. Agbanusi (1)
    S. A. Isaacson (1)
  • 关键词:Stochastic reaction–diffusion ; Diffusion limited reaction
  • 刊名:Bulletin of Mathematical Biology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:76
  • 期:4
  • 页码:922-946
  • 全文大小:
  • 参考文献:1. Andrews, S. S., & Bray, D. (2004). Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. / Phys. Biol., / 1, 137-51. CrossRef
    2. BelHadjAli, H., Amor, A. B., & Brasche, J. F. (2011). Large coupling convergence: overview and new results. In M. Demuth, B. W. Schulze, & I. Witt (Eds.), / Operator theory: advances and applications: Vol.? / 211. / Partial differential equations and spectral theory (pp. 73-17). Basel: Springer. CrossRef
    3. Demuth, M. (1980). On scattering of diffusion process generators. / Lett. Math. Phys., / 4(5), 417-24. CrossRef
    4. Demuth, M., Jeske, F., & Kirsch, W. (1993). Rate of convergence for large coupling limits by Brownian motion. / Ann. Inst. Henri Poincaré, a Phys. Théor., / 59(3), 327-55.
    5. Doi, M. (1976a). Second quantization representation for classical many-particle system. / J. Phys. A, Math. Gen., / 9(9), 1465-477. CrossRef
    6. Doi, M. (1976b). Stochastic theory of diffusion-controlled reaction. / J. Phys. A, Math. Gen., / 9(9), 1479-495. CrossRef
    7. Donev, A., Bulatov, V. V., Oppelstrup, T., Gilmer, G. H., Sadigh, B., & Kalos, M. H. (2010). A first-passage kinetic Monte Carlo algorithm for complex diffusion–reaction systems. / J. Comp. Physiol., / 229(9), 3214-236. CrossRef
    8. Drawert, B., Engblom, S., & Hellander, A. (2012). URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries. / BMC Syst. Biol., / 6(1), 76. CrossRef
    9. Dushek, O., van der Merwe, P. A., & Shahrezaei, V. (2011). Ultrasensitivity in multisite phosphorylation of membrane-anchored proteins. / Biophys. J., / 100(5), 1189-197. CrossRef
    10. Elf, J., & Ehrenberg, M. (2004). Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. / IET Syst. Biol., / 1(2), 230-36. CrossRef
    11. Erban, R., & Chapman, S. J. (2009). Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions. / Phys. Biol., / 6(4), 046001. CrossRef
    12. Erban, R., Chapman, S. J., & Maini, P. K. (2007). A practical guide to stochastic simulations of reaction-diffusion processes. arXiv:0704.1908 [q-bio.SC].
    13. Fange, D., Berg, O. G., Sj?berg, P., & Elf, J. (2010). Stochastic reaction–diffusion kinetics in the microscopic limit. / Proc. Natl. Acad. Sci. USA, / 107(46), 19820-9825. CrossRef
    14. Fange, D., Mahmutovic, A., & Elf, J. (2012). MesoRD 1.0: stochastic reaction–diffusion simulations in the microscopic limit. / Bioinformatics, / 28(23), 3155-157. CrossRef
    15. Gardiner, C. W. (1996). / Springer series in synergetics: Vol.? / 13. / Handbook of stochastic methods: for physics, chemistry, and the natural sciences (2nd ed.). New York: Springer.
    16. Gardiner, C. W., McNeil, K. J., Walls, D. F., & Matheson, I. S. (1976). Correlations in stochastic models of chemical reactions. / J. Stat. Phys., / 14, 307. CrossRef
    17. Gesztesy, F., Gurarie, D., Holder, H., Klaus, M., Sadun, L., Simon, B., & Vogl, P. (1988). Trapping and cascading of eigenvalues in the large coupling limit. / Commun. Math. Phys., / 118(4), 597-34. CrossRef
    18. Girsanov, I. V. (1960). The solution of certain boundary problems for parabolic and elliptic equations with discontinuous coefficients. / Sov. Math. Dokl., / 1, 1373-375.
    19. Glimm, J., & Jaffe, A. (1987). / Quantum physics; a functional integral point of view (2nd ed.). New York: Springer.
    20. Hellander, S., Hellander, A., & Petzold, L. (2012). Reaction–diffusion master equation in the microscopic limit. / Phys. Rev. E, / 85(4), 042901. CrossRef
    21. Hepburn, I., Chen, W., Wils, S., & De Schutter, E. (2012). STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies. / BMC Syst. Biol., / 6(1), 36. CrossRef
    22. Isaacson, S. A. (2008). Relationship between the reaction–diffusion master equation and particle tracking models. / J. Phys. A, Math. Theor., / 41(6), 065003. CrossRef
    23. Isaacson, S. A. (2009). The reaction–diffusion master equation as an asymptotic approximation of diffusion to a small target. / SIAM J. Appl. Math., / 70(1), 77-11. CrossRef
    24. Isaacson, S. A. (2012, submitted). A convergent reaction–diffusion master equation. Preprint. arXiv:1211.6772.
    25. Isaacson, S. A., & Isaacson, D. (2009). Reaction–diffusion master equation, diffusion-limited reactions, and singular potentials. / Phys. Rev. E, / 80(6), 066106. CrossRef
    26. Isaacson, S. A., McQueen, D. M., & Peskin, C. S. (2011). The influence of volume exclusion by chromatin on the time required to find specific DNA binding sites by diffusion. / Proc. Natl. Acad. Sci. USA, / 108(9), 3815-820. CrossRef
    27. Kang, H.-W., Zheng, L., & Othmer, H. G. (2012). A new method for choosing the computational cell in stochastic reaction–diffusion systems. / J. Math. Biol., / 65(6-), 1017-099. CrossRef
    28. Keizer, J. (1982). Nonequilibrium statistical thermodynamics and the effect of diffusion on chemical reaction rates. / J. Phys. Chem., / 86, 5052-067. CrossRef
    29. Kerr, R. A., et al. (2008). Fast Monte Carlo simulation methods for biological reaction–diffusion systems in solution and on surfaces. / SIAM J. Sci. Comput., / 30(6), 3126-149. CrossRef
    30. Kühner, F., Costa, L. T., Bisch, P. M., Thalhammer, S., Heckl, W. M., & Gaub, H. E. (2004). LexA-DNA bond strength by single molecule force spectroscopy. / Biophys. J., / 87, 2683-690. CrossRef
    31. Lipkova, J., Zygalakis, K. C., Chapman, S. J., & Erban, R. (2011). Analysis of Brownian Dynamics simulations of reversible bimolecular reactions. / SIAM J. Appl. Math., / 71(3), 714. CrossRef
    32. McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. / J. Appl. Probab., / 4, 413-78. CrossRef
    33. Nadkarni, S., Bartol, T. M., Stevens, C. F., Sejnowski, T. J., & Levine, H. (2012). Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal. / Proc. Natl. Acad. Sci. USA, / 109(36), 14657-4662. CrossRef
    34. Olenik, O. A. (1961). Boundary-value problems for linear elliptic and parabolic equations with discontinuous coefficients. / Izv. Akad. Nauk SSSR, Ser. Mat., / 25(1), 3-0.
    35. Smoluchowski, M. V. (1917). Mathematical theory of the kinetics of the coagulation of colloidal solutions. / Z. Phys. Chem., / 92, 129-68.
    36. Takahashi, K., Tanase-Nicola, S., & ten Wolde, P. R. (2010). Spatio-temporal correlations can drastically change the response of a MAPK pathway. / Proc. Natl. Acad. Sci. USA, / 107(6), 2473-478. CrossRef
    37. Taylor, M. E. (1996). / Applied mathematical sciences: Vol.? / 116. / Partial differential equations II: qualitative studies of linear equations. New York: Springer. CrossRef
    38. Teramoto, E., & Shigesada, N. (1967). Theory of bimolecular reaction processes in liquids. / Prog. Theor. Phys., / 37(1), 29-1. CrossRef
    39. Van Kampen, N. G. (2001). / Stochastic processes in physics and chemistry. Amsterdam: North-Holland.
  • 作者单位:I. C. Agbanusi (1)
    S. A. Isaacson (1)

    1. Department of Mathematics and Statistics, Boston University, 111 Cummington St., Boston, MA, 02215, USA
  • ISSN:1522-9602
文摘
Stochastic reaction–diffusion models have become an important tool in studying how both noise in the chemical reaction process and the spatial movement of molecules influences the behavior of biological systems. There are two primary spatially-continuous models that have been used in recent studies: the diffusion limited reaction model of Smoluchowski, and a second approach popularized by Doi. Both models treat molecules as points undergoing Brownian motion. The former represents chemical reactions between two reactants through the use of reactive boundary conditions, with two molecules reacting instantly upon reaching a fixed separation (called the reaction-radius). The Doi model uses reaction potentials, whereby two molecules react with a fixed probability per unit time, λ, when separated by less than the reaction radius. In this work, we study the rigorous relationship between the two models. For the special case of a protein diffusing to a fixed DNA binding site, we prove that the solution to the Doi model converges to the solution of the Smoluchowski model as λ→∞, with a rigorous \(O(\lambda^{-\frac{1}{2} + \epsilon})\) error bound (for any fixed ?>0). We investigate by numerical simulation, for biologically relevant parameter values, the difference between the solutions and associated reaction time statistics of the two models. As the reaction-radius is decreased, for sufficiently large but fixed values of λ, these differences are found to increase like the inverse of the binding radius.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700