Torsional modulus and internal friction of polyacrylonitrile- and pitch-based carbon fibers
详细信息    查看全文
  • 作者:Masashi Ishikawa ; Yasuo Kogo ; Jun Koyanagi ; Fumihiko Tanaka…
  • 刊名:Journal of Materials Science
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:50
  • 期:21
  • 页码:7018-7025
  • 全文大小:1,169 KB
  • 参考文献:1.Fischer L, Ruland W (1980) The influence of graphitization on the mechanical properties of carbon fibers. Colloid Polym Sci 258:917-22View Article
    2.Oberlin A (1984) Carbonization and graphitization. Carbon 22:521-41View Article
    3.Johnson DJ (1987) Structure-property relationship in carbon fibres. J Phys D Appl Phys 20:286-91View Article
    4.Northolt MG, Veldhuizen LH, Jansen H (1991) Tensile deformation of carbon fibers and the relationship with the modulus for shear between the basal planes. Carbon 29:1267-279View Article
    5.Huang Y, Young RJ (1995) Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres. Carbon 33:97-07View Article
    6.Paris O, Loidl D, Peterlik H (2002) Texture of PAN- and pitch-based carbon fibres. Carbon 40:551-55View Article
    7.Li W, Long D, Miyawaki J, Qiao W, Ling L, Mochida I, Yoon S (2012) Structural features of polyacrylonitrile-based carbon fiber. J Mater Sci 47:919-28. doi:10.-007/?s10853-011-5872-2 View Article
    8.Naito K, Yang J, Tanaka Y, Kagawa Y (2012) The effect of gauge length on tensile strength and Weibull modulus of polyacrylonitrile (PAN)- and pitch-based carbon fibers. J Mater Sci 47:632-42. doi:10.-007/?s10853-011-5832-x View Article
    9.Dumanh AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47:4236-250. doi:10.-007/?s10853-011-6081-8 View Article
    10.Naito K, Tanaka Y, Yang JM, Kagawa Y (2008) Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers. Carbon 46:189-95View Article
    11.Loidl D, Paris O, Rennhofer H, Müller M, Peterlik H (2007) Skin-core structure and bimodal Weibull distribution of the strength of carbon fibers. Carbon 45(14):2801-805View Article
    12.Chand S (2000) Review Carbon fibers for composites. J Mater Sci 35:1303-313. doi:10.-023/?A:-004780301489 View Article
    13.Melanitis N, Tetlow PL, Galiotis C, Smith SB (1994) Compression behavior of carbon fibres. J Mater Sci 29:786-99. doi:10.-007/?BF00445995 View Article
    14.Oya N, Johnson DJ (2001) Longitudinal compressive behavior and microstructure of PAN-based carbon fibres. Carbon 39:635-45View Article
    15.Todt M, Rammerstorfer FG, Paris O, Fischer FD (2010) Nanomechanical studies of the compressive behavior of carbon fibres. J Mater Sci 45:6845-848. doi:10.-007/?s10853-010-4941-2 View Article
    16.Tanaka F, Okabe T, Okuda H, Kinloch IA, Young RJ (2013) The effect of nanostructure upon the compressive strength of carbon fibers. J Mater Sci 48:2104-110. doi:10.-007/?s10853-012-6984-z View Article
    17.Naito K, Tanaka Y, Yang JM, Kagawa Y (2009) Flexural properties of PAN-and pitch-based carbon fibers. J Am Ceram Soc 92(1):186-92View Article
    18.Loidl D, Paris O, Burghammer M, Riekel C, Peterlik H (2005) Direct observation of nanocrystallite buckling in carbon fibers under bending load. Phys Rev Lett 95(22):225501View Article
    19.Tanaka F, Okabe T, Okuda H, Ise M, Kinloch IA, Mori T, Young RJ (2013) The effect of nanostructure upon the deformation micromechanics of carbon fibres. Carbon 52:372-78View Article
    20.Loidl D, Peterlik H, Müller M, Riekel C, Paris O (2003) Elastic moduli of nanocrystallites in carbon fibers measured by in situ X-ray microbeam diffraction. Carbon 41(3):563-70View Article
    21.Maurin R, Davies P, Baral N, Baley C (2008) Transverse Properties of Carbon Fibres by Nano-indentation and Micro-mechanics. Appl Compos Mater 15:61-3View Article
    22.Norton JT (1939) A torsion pendulum instrument for measuring internal friction. Rev Sci Instrum 10:77-1View Article
    23.Ke TS (1947) Experimental evidence of the viscous behavior of grain boundaries in metals. Phys Rev 71:533-46View Article
    24.Adams RD, Lloyd DH (1975) Apparatus for measuring the torsional modulus and damping of single carbon fibres. J Phy E: Sci Instrum 8:475-80View Article
    25.Heijboer J (1979) The torsion pendulum in the investigation of polymers. Polym Eng Sci 19:664-75View Article
    26.Deteresa SJ, Allen SR, Farris RJ, Porter RS (1984) Compressive and torsional behavior of Kevlar 49 fibre. J Mater Sci 19:57-2. doi:10.-007/?BF02403111 View Article
    27.Villeneuve JF, Naslain R (1993) Shear moduli of carbon, Si-C-O, Si-C-Ti-O and alumina single ceramic fibers as assessed by torsion pendulum tests. Compos Sci Technol 49:191-03View Article
    28.Hudspeth M, Nie X, Chen W (2012) Dynamic failure of Dyneema SK76 single fibers under biaxial shear/tension. Polymer 53:5568-574View Article
    29.Sawada Y (1991) Torsional and tensile properties of isotropic ceramic fibers. Trans Jpn Soc Mech Eng Ser A 57:530-35 (in Japanese) View Article
    30.Sawada Y, Shindo A (1992) Torsional properties of carbon fibers. Carbon 30:619-29View Article
    31.Mehta VR, Kumar S (1994) Temperature dependent torsional properties of high performance fibres and their relevance to compressive strength.
  • 作者单位:Masashi Ishikawa (1) (4)
    Yasuo Kogo (1)
    Jun Koyanagi (1)
    Fumihiko Tanaka (2)
    Tomonaga Okabe (3)

    1. Tokyo University of Science, 6-3-1 Niijuku, Katsushika-Ku, Tokyo, 125-8585, Japan
    4. Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
    2. Toray Industries, Inc., 1515 Tsutsui, Masaki-cho, Iyo-Gun, Ehime, 791-3193, Japan
    3. Tohoku University, 6-6-01 Aoba-yama, Aoba-ku, Sendai, Miyagi, 980-0856, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
In the present work, the torsional modulus and internal friction of different types of polyacrylonitrile (PAN)- and pitch-based carbon fibers were measured with the torsional pendulum method to evaluate the relationship between these properties and the microstructure of carbon fibers. For easier and more accurate measurement, an aluminum disk-type pendulum was used. The measured torsional moduli were comparable to the previously reported values, which indicates the validity of the proposed method. The experimental results and discussion based on Eshelby’s solution and Mori–Tanaka’s mean stress method revealed that the torsional modulus should have a significant relation to the volume fraction of the crystalline region in the fibers and amorphous modulus. The results imply that fibers with a smaller crystalline region and higher amorphous modulus should show a higher torsional modulus. The internal friction of the fibers increased with the torsional modulus. This suggests that the internal friction may also be related to the size of the crystalline region and that the amorphous region has greater internal friction than the crystalline region.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700