Xylanase (GH11) from Acremonium cellulolyticus: homologous expression and characterization
详细信息    查看全文
  • 作者:Masahiro Watanabe (1)
    Hiroyuki Inoue (1)
    Benchaporn Inoue (1)
    Miho Yoshimi (1)
    Tatsuya Fujii (1)
    Kazuhiko Ishikawa (1)
  • 关键词:Acremonium cellulolyticus ; Xylanase ; Hemicellulose ; Homologous expression ; Biomass ; Xylan
  • 刊名:AMB Express
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:4
  • 期:1
  • 全文大小:1,025 KB
  • 参考文献:1. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257-70, doi:10.1016/0168-1656(92)90074-J CrossRef
    2. Beaugrand J, Chambat G, Wong V, Goubet F, Rémond C, Pa?s G, Benamrouche S, Debeire P, O'Donohue M, Chabbert B (2004) Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr Res 339:2529-540, doi:10.1016/j.carres.2004.08.012 CrossRef
    3. Carpita NC, Gibeaut DM (1993) Structural models of primary-cell walls in flowering plants - consistency of molecular-structure with the physical-properties of the walls during growth. Plant J 3:1-0, doi:10.1111/j.1365-313X.1993.tb00007.x CrossRef
    4. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3-3, doi:10.1016/j.femsre.2004.06.005 CrossRef
    5. Coughlan MP, Hazlewood GP (1993) Beta-1,4-D-xylan-degrading enzyme-systems - biochemistry, molecular-biology and applications. Biotechnol Appl Biochem 17:259-89, doi:10.1111/j.1470-8744.1993.tb00244.x
    6. Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. Roy Soc Ch 246:3-2
    7. Deutschmann R, Dekker RF (2012) From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnol Adv 30:1627-640, doi:10.1016/j.biotechadv.2012.07.001 CrossRef
    8. Dimarogona M, Topakas E, Christakopoulos P, Chrysina ED (2012) The structure of a GH10 xylanase from / Fusarium oxysporum reveals the presence of an extended loop on top of the catalytic cleft. Acta Crystallogr D 68:735-42, doi:10.1107/S0907444912007044 CrossRef
    9. Fang X, Yano S, Inoue H, Sawayama S (2009) Strain improvement of / Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 107:256-61, doi:10.1016/j.jbiosc.2008.11.022 CrossRef
    10. Fujii T, Fang X, Inoue H, Murakami K, Sawayama S (2009) Enzymatic hydrolyzing performance of / Acremonium cellulolyticus and / Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2:24, doi:10.1186/1754-6834-2-24 CrossRef
    11. Fujii T, Murakami K, Sawayama S (2010) Cellulase hyperproducing mutants derived from the fungus / Trichoderma reesei QM9414 produced large amounts of cellulase at the enzymatic and transcriptional levels. Biosci Biotechnol Biochem 74:419-22, http://dx.doi.org/10.1271/bbb.90655 CrossRef
    12. Fujii T, Iwata K, Murakami K, Yano S, Sawayama S (2012) Isolation of uracil auxotrophs of the fungus / Acremonium cellulolyticus and the development of a transformation system with the pyrF gene. Biosci Biotechnol Biochem 76:245-49, http://dx.doi.org/10.1271/bbb.110498 CrossRef
    13. Hachmann JP, Amshey JW (2005) Models of protein modification in Tris-glycine and neutral pH Bis-Tris gels during electrophoresis: effect of gel pH. Anal Biochem 342:237-45, http://dx.doi.org/10.1016/j.ab.2005.04.015 CrossRef
    14. Harris GW, Jenkins JA, Connerton I, Cummings N, Loleggio L, Scott M, Hazlewood GP, Laurie JI, Gilbert HJ, Pickersgill RW (1994) Structure of the catalytic core of the family F xylanase from / Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Structure 2:1107-116 CrossRef
    15. Inoue H, Fujii T, Yoshimi M, Taylor LE 2nd, Decker SR, Kishishita S, Nakabayashi M, Ishikawa K (2013) Construction of a starch-inducible homologous expression system to produce cellulolytic enzymes from / Acremonium cellulolyticus. J Ind Microbiol Biotechnol 40:823-30, doi:10.1007/s10295-013-1286-2 CrossRef
    16. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377-91, doi:10.1007/s10295-008-0327-8 CrossRef
    17. Lee JW, JY P k, Kwon M, Choi IG (2009) Purification and characterization of a thermostable xylanase from the brown-rot fungus / Laetiporus sulphureus. J Biosci Bioeng 107:33-7, doi:10.1016/j.jbiosc.2008.09.006 CrossRef
    18. Lo Leggio L, Kalogiannis S, Bhat MK, Pickersgill RW (1999) High resolution structure and sequence of / T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta)alpha-barrel architecture. Proteins 36:295-06, doi:10.1002/(SICI)1097-0134(19990815)36:3 CrossRef
    19. Lo MC, Aulabaugh A, Jin GX, Cowling R, Bard J, Malamas M, Ellestad G (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153-59, http://dx.doi.org/10.1016/j.ab.2004.04.031 CrossRef
    20. McIlvaine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183-86
    21. Mitsuishi Y, Yamanobe T, Yagisawa M, Takasaki Y (1987) Purification and properties of thermostable xylanases from mesophilic fungus strain Y-94. Agric Biol Chem 51:3207-213, http://dx.doi.org/10.1271/bbb1961.51.3207 CrossRef
    22. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212-221, doi:10.1038/nprot.2007.321 CrossRef
    23. Pa?s G, Berrin JG, Beaugrand J (2012) GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 30:564-92, doi:10.1016/j.biotechadv.2011.10.003 CrossRef
    24. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577-91, doi:10.1007/s00253-005-1904-7 CrossRef
    25. Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:101-31 CrossRef
    26. Senisterra GA, Finerty PJ Jr (2009) High throughput methods of assessing protein stability and aggregation. Mol Biosyst 5:217-23, doi:10.1039/b814377c CrossRef
    27. Shibuya T, Watanabe Y, Nalley KA, Fusco A, Salafsky B (1989) The BCA protein determination system. An analysis of several buffers, incubation temperature and protein standards. Tokyo Ika Daigaku Zasshi 47:677-82
    28. Sidhu G, Withers SG, Nguyen NT, McIntosh LP, Ziser L, Brayer GD (1999) Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Biochemistry 38:5346-354, doi:10.1021/bi982946f CrossRef
    29. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76-5, http://dx.doi.org/10.1016/0003-2697(85)90442-7 CrossRef
    30. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673-680, doi:10.1093/nar/22.22.4673 CrossRef
    31. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477-492, doi:10.1007/s00253-011-3473-2 CrossRef
    32. Yamanobe T, Mitsuishi Y, Takasaki Y (1987) Isolation of a cellulolytic enzyme producing microorganism, culture conditions and some properties of the enzymes. Agric Biol Chem 51:65-4 CrossRef
    33. York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis -which end is up? Curr Opin Plant Biol 11:258-65, doi:10.1016/j.pbi.2008.02.007 CrossRef
    34. Zou G, Shi S, Jiang Y, van den Brink J, de Vries RP, Chen L, Zhang J, Ma L, Wang C, Zhou Z (2012) Construction of a cellulase hyper-expression system in / Trichoderma reesei by promoter and enzyme engineering. Microb Cell Fact 11:21, doi:10.1186/1475-2859-11-21 CrossRef
  • 作者单位:Masahiro Watanabe (1)
    Hiroyuki Inoue (1)
    Benchaporn Inoue (1)
    Miho Yoshimi (1)
    Tatsuya Fujii (1)
    Kazuhiko Ishikawa (1)

    1. Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
  • ISSN:2191-0855
文摘
Cellulosic materials constitute most of the biomass on earth, and can be converted into biofuel or bio-based materials if fermentable sugars can be released using cellulose-related enzymes. Acremonium cellulolyticus is a mesophilic fungus which produces a high amount of cellulose-related enzymes. In the genome sequence data of A. cellulolyticus, ORFs showing homology to GH10 and GH11 xylanases were found. The xylanases of A. cellulolyticus play an important role in cellulolytic biomass degradation. Search of a draft genome sequence of A. cellulolyticus for xylanase coding regions identified seven ORFs showing homology to GH 11 xylanase genes (xylA, xylB, xylC, xylD, xylE, xylF and xylG). These genes were cloned and their enzymes were prepared with a homologous expression system under the control of a glucoamylase promoter. Six of the seven recombinant enzymes were successfully expressed, prepared, and characterized. These enzymes exhibited optimal xylanase activity at pH?4.0 -4.5. But this time, we found that only XylC had enormously higher relative activity (2947 U?mg ?) than the other xylanases at optimum pH. This result is surprising because XylC does not retain a carbohydrate-binding module 1 (CBM-1) that is necessary to bind tightly own substrate such as xylan. In this study, we discuss the relationship between activity, pH and sequence of seven xylanases in A. cellulolyticus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700