Numerical runout simulation of debris avalanches in the Faroe Islands, North Atlantic Ocean
详细信息    查看全文
  • 作者:Mads-Peter J Dahl ; Peter Gauer ; Bj?rn G Kalsnes ; Lis E Mortensen…
  • 关键词:Debris avalanches ; BING ; DAN3D ; Landslide runout behavior ; Landslide risk ; The Faroe Islands
  • 刊名:Landslides
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:10
  • 期:5
  • 页码:623-631
  • 全文大小:622KB
  • 参考文献:1. Aune B, F?rland EJ (1986) Precipitation in the Faroe Islands—estimates related to hydropower extensions on Eysturoy. Norwegian Meteorological Institute, Report no. 27/86, Oslo
    2. Ayotte D, Hungr O (2000) Calibration of a runout prediction model for debris-flows and avalanches. In: Wieczorek GF, Naeser ND (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. AA Balkema, Rotterdam, pp 505-14
    3. Beguería S, Van Asch TWJ, Malet J-P, Gr?ndahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazards Earth Syst Sci 9:1897-909 CrossRef
    4. Bertolo P, Bottino G (2008) Debris-flow event in the Frangerello Stream-Susa Valley (Italy)—calibration of numerical models for the back analysis of the 16 October, 2000 rainstorm. Landslides 5:19-0 CrossRef
    5. Bertolo P, Wieczorek GF (2005) Calibration of numerical models for small debris flows in Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 5:993-001 CrossRef
    6. Cappelen J, Laursen EV (1998) The climate of the Faroe Islands—with climatological standard normals, 1961-990. Danish Meteorological Institute, Ministry of Transport, Report no. 98-14, Copenhagen
    7. Cepeda J (2007) The 2005 on Tate's Cairn debris flow: back-analysis, forward predictions and a sensitivity analysis. In: Ho K, Li V (eds) 2007 International forum landslide disaster management. The Hong Kong Institution of Civil Engineers, Hong Kong, pp 813-33
    8. Chen H, Lee CF (2000) Numerical simulation of debris flows. Can Geotec J 37:146-60 CrossRef
    9. Chen H, Lee CF (2003) A dynamic model for rainfall-induced landslides on natural slopes. Geomorphol 51:269-88 CrossRef
    10. Christiansen HH (1998) Highland aeolian deposits in the Faroe Islands. Fróeskaparrit 46:205-13
    11. Christiansen HH, Mortensen LE (2002) Arctic mountain meteorology at the Sornfelli Mountain in year 2000 in the Faroe Islands. Fróeskaparrit 50:93-10
    12. Christiansen HH, Blikra LH, Mortensen LE (2007) Holocene slope processes and landforms in the northern Faroe Islands. Earth Environ Sci Trans R Soc Edinb 98:1-3
    13. Dahl M-PJ (2007) Landslides in the Faroe Islands—an analysis of triggering parameters. M.Sc. Dissertation, Roskilde University, (In Danish with English Abstr.)
    14. Dahl M-PJ, Mortensen LE, Veihe A, Jensen NH (2010) A simple qualitative approach for mapping regional landslide susceptibility in the Faroe Islands. Nat Hazards Earth Syst Sci 10:159-70 CrossRef
    15. DAN3D (2010) DAN3D—dynamic analysis of landslides in three dimensions. Beta version 2. O. Hungr Geotechnical Engineering Inc., Vancouver.
    16. Fraccarollo L, Papa M (2000) Numerical simulation of real debris-flow events. Phys Chem Earth 25:757-63 CrossRef
    17. Geertsema M, Hungr O, Schwab JW, Evans SG (2006) A large rockslide-debris avalanche in cohesive soil at Pink Mountain, northeastern British Columbia, Canada. Eng Geol 83:64-5 CrossRef
    18. Humlum O (1996) Main shapes of the landscape Funningur, Sl?ttaratindur. In: Guttesen R (ed) Topographic atlas the Faroe Islands. Royal Danish Geographical Society, Copenhagen, pp 38-1 (in Danish)
    19. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotec J 32:610-23 CrossRef
    20. Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7:221-38
    21. Hutter K, Koch T (1991) Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Philos Trans: Phys Sci Eng 334:93-38 CrossRef
    22. ICG (2007) Benchmarking of debris flow runout distance—simulation of Sham Tseng San Tsuen and Tate's Cairn debris flows. Cepeda J, Quan B, Gauer P (ed), International Centre for Geohazards, Norwegian Geotechnical Institute, Report no. 20071435-1, Oslo
    23. ICG-Safeland (2010) Pre-processing of GIS data for DAN3D analysis. Dahl M-PJ, Kalsnes B, Cepeda J (ed), International Centre for Geohazards, Norwegian Geotechnical Institute, Report no. 20092228-00-2-R, Oslo.
    24. Imran J (1999) BING subaqueous and subaerial finite-source debris flow model. Saint Anthony Falls Laboratory, Minneapolis
    25. Imran J, Harff P, Parker G (2001) A numerical model of submarine debris flow with graphical user interface. Comput Geosci 27:717-29 CrossRef
    26. Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245-96 CrossRef
    27. Jarefeingi (2011) The Syeradalur Landslide—a geomorphological assessment of future scenarios. Dahl M-PJ, Mortensen LE (ed), Jarefeingi (Faroese Earth and Energy Directorate), Report no. 2011-01, Tórshavn.
    28. Laigle D, Coussot P (1997) Numerical modeling of mudflows. J Hydraul Eng 123:617-23 CrossRef
    29. Malet J-P, Maquaire O, Locat J, Rema?tre A (2004) Assessing debris flow hazards associated with slow moving landslides: methodology and numerical analysis. Landslides 1:83-0 CrossRef
    30. McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. University of British Columbia, PhD Dissertation
    31. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotec J 41:1084-097 CrossRef
    32. McKinnon M (2010) Landslide runout—statistical analysis of physical characteristics and model parameters. M.Sc. Dissertation, University of British Columbia.
    33. O'Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119:244-61 CrossRef
    34. Passey SR, Bell BR (2007) Morphologies and emplacement mechanisms of the lava flows of the Faroe Islands Basalt Group, Faroe Islands, NE Atlantic Ocean. Bull Volcanol 70:139-56 CrossRef
    35. Passey SR, Jolley DW (2008) A revised lithostratigraphic nomenclature for the Palaeogene Faroe Islands Basalt Group, NE Atlantic Ocean. Earth Environ Sci Trans R Soc Edinb 99:127-58 CrossRef
    36. Portilla M, Chevalier G, Hürlimann M (2010) Description and analysis of the debris flows occurred during 2008 in the eastern Pyrenees. Nat Hazards Earth Syst Sci 10:1635-645 CrossRef
    37. Quan Luna B, Rema?tre A, van Asch TWJ, Malet J-P, van Westen CJ (2012) Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng Geol 128:63-5 CrossRef
    38. RAMMS (2008) RAMMS rapid mass movements—user manual. WSL Institute for Snow and Avalanche Research SLF, Switzerland
    39. Rasmussen J, Noe-Nygaard A (1969) Description to geological map of the Faroe Islands, 1st series 24. Geological Survey of Denmark, Copenhagen, (in Danish).
    40. Rema?tre A, Malet J-P, Maquaire O, Ancey C, Locat J (2005) Flow behaviour and runout modelling of a complex debris flow in a clay-shale basin. Earth Surf Process Landf 30:479-88 CrossRef
    41. Revellino P, Hungr O, Guadagno FM, Evans SG (2004) Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy. Environ Geol 45:295-11 CrossRef
    42. Rutherford GK, Debenham PL (1981) The mineralogy of some silt and clay fractions from soils on the Faeroe Islands. Soil Sci 132:288-99 CrossRef
    43. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177-15 CrossRef
    44. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc, Ser B (Methodol) 36:111-47
    45. Veihe A, Thers M (2007) Pedogenesis and root development in a complex geomorphologic setting of the Faroe Islands. Commun Soil Sci Plant Anal 22:293-14 CrossRef
    46. Voellmy A (1955) über die Zerst?rungskraft von Lawinen. Schweiz Bauztg 73:212-85
  • 作者单位:Mads-Peter J Dahl (1) (2) (3)
    Peter Gauer (4)
    Bj?rn G Kalsnes (4) (5)
    Lis E Mortensen (3)
    Niels H Jensen (2)
    Anita Veihe (2)

    1. Norwegian Water Resources and Energy Directorate, Middelthunsgate 29, Majorstua, Postbox 5091, 0301, Oslo, Norway
    2. Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, Postbox 260, 4000, Roskilde, Denmark
    3. Jarefeingi (Faroese Earth and Energy Directorate), Brekkutún 1, Postbox 3059, 0110, Tórshavn, Faroe Islands
    4. Norwegian Geotechnical Institute, Postbox 3930,, Ullevaal Stadion, 0806, Oslo, Norway
    5. International Centre for Geohazards, Norwegian Geotechnical Institute, Postbox 3930,, Ullevaal Stadion, 0806, Oslo, Norway
  • ISSN:1612-5118
文摘
The Faroe Islands in the North Atlantic Ocean are susceptible to flow-type landslides in coarse-grained highly organic colluvium. Following several hazardous debris avalanche events, research work has been initiated to quantify landslide risk. A central task in this work is to predict landslide runout behavior. From numerical simulation of four debris avalanches, this study provides a first screening of which rheology and appertaining input parameters best predict runout behavior of debris avalanches in the Faroe Islands. Three rheologies (frictional, Voellmy, and Bingham) are selected and used for individual back analysis of the events in the numerical models BING and DAN3D. A best fit rheology is selected from comparing predicted and observed landslide runout behavior. General back analysis to identify the optimal input parameters for the chosen rheology is performed by cross validation, where each debris avalanche is modeled with input parameters from the three other events. Optimal input parameters are found from the model run producing the most accurate runout length and velocity. The Bingham is selected as the best fit rheology, a result differing from similar studies of coarse-grained landslides. A reason for why particularly the frictional rheology proves unsuitable is its tendency to produce too long runout lengths of the low-weight runout material, a result showing important limitations for using the frictional rheology in DAN3D. Optimal Bingham input parameters are τ y --80?Pa and μ b --17?Pa/s. However, future studies performed in 2D models are needed for precise parameterization before results can be used for landslide risk assessment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700