A debris avalanche at Süphan stratovolcano (Turkey) and implications for hazard evaluation
详细信息    查看全文
  • 作者:Yavuz Özdemir ; İsmail Akkaya ; Vural Oyan ; Karim Kelfoun
  • 关键词:Süphan stratovolcano ; Eastern anatolia ; Debris avalanche ; Tsunami ; Volcflow
  • 刊名:Bulletin of Volcanology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:78
  • 期:2
  • 全文大小:37,539 KB
  • 参考文献:Angus DA, Wilson DC, Sandvol E, Ni JF (2006) Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S-wave receiver functions. Geophys J Int 166:1335–1346CrossRef
    Bernard J, Kelfoun K, Le Pennec JL, Vargas SV (2014) Pyroclastic flow erosion and bulking processes: comparing field-based vs. modeling results at Tungurahua volcano, Ecuador. Bull Volcanol 76:1–16
    Borselli L, Capra L, Sarocchi D, De la Cruz-Reyna S (2011) Flank col- 406 lapse scenarios at volcan de Colima, Mexico: a relative instability analysis. J Volcanol Geotherm Res 208:51–65CrossRef
    Capra L, Norini G, Groppelli G, Macías JL, Arce JL (2008) Volcanic hazard zonation of Nevado de Toluca volcano. J Volcanol Geotherm Res 176:469–484CrossRef
    Chen H, Lee CF (2000) Numerical simulation of debris flows. Can Geotech J 37(1):146–160CrossRef
    Chen H, Lee CF (2003) A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology 51:269–288CrossRef
    Crosta GB, Chen H, Lee CF (2004) Replay of the 1987 Val Pola landslide, Italian alps. Geomorphology 60(1–2):127–146CrossRef
    Crosta GB, Imposimato S, Roddeman D (2009) Numerical modelling of entrainment/ deposition in rock and debris-avalanches. Eng Geol 109(1–2):135–145CrossRef
    Cukur D, Krastel S, Schmincke HU, Sumita M, Çağatay MN, Meydan AF, Damcı E, Stockhecke M (2014) Seismic stratigraphy of lake Van, eastern Turkey. Quat Sci Rev 104:63–84CrossRef
    Dade WB, Huppert HE (1998) Long-runout rockfalls. Geology 26:803–806CrossRef
    Degens ET, Wong HK, Kempe S, Kurtmann F (1984) A geological study of Lake Van, eastern Turkey. Geol Rundsch 73(2):701–734CrossRef
    Devoli G, Cepeda J, Kerle N (2009) The 1998 casita volcano flank failure revisited—new insights into geological setting and failure mechanisms. Eng Geol 105:65–83CrossRef
    Giachetti T, Paris R, Kelfoun K, José Pérez-Torrado F (2011) Numerical modelling of the tsunami triggered by the Güìmar debris avalanche, Tenerife (Canary Islands): comparison with field-based data. Mar Geol 284:189–202CrossRef
    Glicken H (1982) Criteria for identification of large volcanic debris avalanches (abstr). EOS Trans Am Geophys Union 63:1141
    Glicken H (1986) Rockslide–debris avalanche of May 18, 1980, Mount St. Helens volcano. PhD dissertation, Univ Santa Barbara, 303 pp
    Glicken H (1996) Rockslide-debris avalanche of the May 18, 1980, Mount St. Helens Volcano, Washington, U.S. Geol. Surv. Open-file Rep., 96–677
    Heinrich P, Boudon G, Komorowski JC, Sparks RSJ, Herd R, Voight B (2001) Numerical simulation of the December 1997 debris avalanche in Montserrat. Geophys Res Lett 28(13):2529–2532CrossRef
    Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model, Proc. 7th Int. Symp. on Landslides. Int Symp on Landslides 1:233–238
    Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol Soc Am Bull 116:1240–1252CrossRef
    Karaoğlu Ö, Özdemir Y, Tolluoğlu AÜ, Karabıyıkoğlu M, Köse O, Froger JL (2005) Stratigraphy of the volcanic products around Nemrut Caldera: implications for reconstruction of the caldera formation. Turk J Earth Sci 14:123–143
    Keating BH, McGuire WJ (2000) Island edifice failures and associated tsunami hazards. Pure Appl Geophys 157:899–955CrossRef
    Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res 110, B12202CrossRef
    Kelfoun K, Giachetti T, Labazuy P (2010) Landslide-generated tsunamis at Réunion Island. J Geophys Res 115, F04012. doi:10.​1029/​2009JF001381
    Kerle N, van Wyk de Vries B (2001) The 1998 debris avalanche at Casita volcano, Nicaragua: investigation of structural deformation as the cause of slope instability using remote sensing. J Volcanol Geotherm Res 105(1–2):49–63CrossRef
    Kerle N, van Wyk de Vries B, Oppenheimer C (2003a) New insight into the factors leading to the 1998 flank collapse and lahar disaster at Casita volcano, Nicaragua. Bull Volcanol 65:331–345CrossRef
    Kerle N, Froger J-L, Oppenheimer C, van Wyk de Vries B (2003b) Remote sensing of the mudflow at Casita volcano, Nicaragua. Int J Remote Sens 24(23):4791–4816CrossRef
    Le Friant A, Heinrich P, Deplus C, Boudon G (2003) Numerical simulation of the last flank- collapse event of Montagne Pelee, Martinique, lesser Antilles. Geophys Res Lett 30(2):1034CrossRef
    Litt T, Krastel S, Sturm M, Kipfer R, Örcen S, Heumann G, Franz SO, Ülgen UB, Niessen F (2009) ‘PALEOVAN’, international continental scientific drilling program (ICDP): site survey results and perspectives. Quat Sci Rev 28:1555–1567CrossRef
    Mc Guire W (1996) Volcano instability: a review of contemporary themes. Geol Soc Lond Spec Publ 110:1–23CrossRef
    McDougall S, Hungr H (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097CrossRef
    Ogata A, Nakamura K, Nagao K, Akimoto S (1989) K-Ar age of young volcanic rocks of Turkey. Annual meeting of the Geochemical Society of Japan, ICO 3
    Özdemir Y, Güleç N (2014) Geological and geochemical evolution of the quaternary Süphan stratovolcano, eastern Anatolia, Turkey: evidence for the lithosphere-asthenosphere interaction in post-collisional volcanism. J Petrol 55:37–62CrossRef
    Özdemir Y, Karaoğlu Ö, Tolluoğlu AÜ, Guleç N (2006) Volcanostratigraphy and petrogenesis of the Nemrutstratovolcano (East Anatolian Plateau): the most recent post-collisional volcanism in Turkey. Chem Geol 226:189–211CrossRef
    Özdemir Y, Blundy JD, Güleç N (2011) The importance of fractional crystallization and magma mixing in controlling chemical differentiation at Süphan stratovolcano, eastern Anatolia, Turkey. Contrib Mineral Petrol 162:573–597CrossRef
    Özdemir Y, Oyan V, Güleç N (2012) Süphan Volkanik Çığı’nın Jeolojik Özellikleri Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi. J Ins Nat App Scie 17(1):1–5
    Özvan A, Dinçer İ, Akın M, Oyan V, Tapan M (2015) Experimental studies on ignimbrite and the effect of lichens and capillarity on the deterioration of Seljuk Gravestones. Eng Geol 185:81–95CrossRef
    Pınar A, Honkura Y, Kuge K, Matsushima M, Sezgin N, Yilmazer M, Öğütçü Z (2007) Source mechanism of the 2000 November 15 Lake Van earthquake (Mw = 5.6) in eastern Turkey and its seismotectonic implications. Geophys J Int 170(2):749–763CrossRef
    Pitman EB, Patra AK, Bauer A, Sheridan MF, Bursik MI (2003) Computing debris flows and landslides. Phys Fluids 15:3638–3646CrossRef
    Pouget S, Davies T, Kennedy B, Kelfoun K, Leyrit H (2012) Numerical modelling: a useful tool to simulate collapsing volcanoes. Geol Today 28:59–63CrossRef
    Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215CrossRef
    Schmincke HU, Sumita M, Paleovan scientific team (2014) Impact of volcanism on the evolution of Lake Van (eastern Anatolia) III: periodic (Nemrut) vs. episodic (Süphan) explosive eruptions and climate forcing reflected in a tephra gap between ca. 14 ka and ca. 30 ka. J Volcanol Geotherm Res 285:195–213CrossRef
    Schuster RL, Crandell DR (1984) Catastrophic debris avalanches from volcanoes. Proc. IV hit. Symp. on landslide. Toronto 1:567–572
    Scott KM, Macías JL, Naranjo JA, Rodríguez S, McGeehin JP (2001) Catastrophic debris flows transformed from landslides in volcanic terrains: mobility, hazard, assessment, and mitigation strategies. U.S. Geological Survey Professional Paper 1630
    Scott KM, Vallance JW, Kerle N, Macías JL, Strauch W, Devoli G (2005) Catastrophic precipitation-triggered lahar at casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf 30:59–79CrossRef
    Şengör AMC, Özeren S, Zor E, Genc T (2003) East Anatolian high plateau as a mantle supported, N-S shortened modal structure. Geophys Res Lett 30(24):8045. doi:10.​1029/​2003GL017858 CrossRef
    Sheridan MF, Stinton AJ, Patra A, Pitman EB, Bauer A, Nichita CC (2005) Evaluating Titan 2D mass-flow model using the 1963 little Tahoma peak avalanches, Mount Rainier, Washington. J Volcanol Geotherm Res 139(1–2):89–102CrossRef
    Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRef
    Siebert L (2002) Landslides resulting from structural failure of volcanoes. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: effect, occurrence, and mechanisms. Geological Society of America Reviews in Engineering Geology, Boulder XV, pp 209–235CrossRef
    Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bull Volcanol 49:435–459CrossRef
    Sigurdsson H, Houghton B, McNutt SR et al (eds) (2000) Encyclopedia of volcanoes. CA, Academic Press, San Diego
    Sosio R, Crosta GB (2009) Rheology of concentrated granular suspensions and possible implications for debris flow modeling. Water Resour Res 45(W03412):16
    Sosio R, Crosta GB, Hungr O (2011) Numerical modeling of debris avalanche propagation from collapse of volcanic edifices. Landslides 9:315–334CrossRef
    Stoopes GR, Sheridan MF (1992) Giant debris avalanches from the Colima volcanic complex, Mexico: implications for long-runout landslides (>100 km) and hazard assessment. Geology 20:299–302CrossRef
    Tinti S, Pagnoni G, Zaniboni F (2006) The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations. Bull Volcanol 68:462–479CrossRef
    Ui T (1983) Volcanic dry avalanche deposits-identification and comparison with non-volcanic debris stream deposits. In: Aramaki S, Kushiro I (eds). Arc Volcanism. Journal Volcanol Geotherm Res 18: 135–150
    Ui T (1989) Discrimination between debris avalanches and other volcaniclastic deposits. In: Latter, J.H. (Ed.), Volcanic Hazards. IAVCEI Proc. in Volcanology. Springer-Verlag, Heidelberg, 1: pp. 201–209
    Ui T, Takarada T and Yoshimoto M (2000) Debris avalanches, Encyclopedia of Volcanoes, H. Sigurdsson, ed., Academic Press, San Diego, California, pp. 617–626
    van Wyk de Vries B, Kerle N, Petley D (2000) A sector collapse forming at Casita volcano, Nicaragua. Geology 28:167–170CrossRef
    Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In: Lipman P W, Mullineaux D R (eds) The 1980 eruptions of Mount St. Helens, Washington. U S Geol Surv Prof Pap 1250:347–348
    Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. Geotechnique 33(3):243–273CrossRef
    Yılmaz Y, Güner Y, Şaroğlu F (1998) Geology of the quaternary volcanic centers of the east Anatolia. J Volcanol Geotherm Res 85:173–210CrossRef
  • 作者单位:Yavuz Özdemir (1)
    İsmail Akkaya (2)
    Vural Oyan (3)
    Karim Kelfoun (4)

    1. Department of Geological Engineering, Yuzuncu Yıl University, Van, Turkey
    2. Department of Geophysical Engineering, Yuzuncu Yıl University, Van, Turkey
    3. Department of Mining Engineering, Yuzuncu Yıl University, Van, Turkey
    4. Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, France
  • 刊物主题:Geology; Geophysics/Geodesy; Mineralogy; Sedimentology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-0819
文摘
The Quaternary Süphan debris avalanche deposit is located in Eastern Anatolia, Turkey. The avalanche formed by the sector collapse of a major stratovolcano towards the north, possibly during a single catastrophic event. The deposit has an estimated volume of 4 km3 and ran out over 25 km to cover an area of approximately 200 km2. Products of the collapse are overlain by younger eruptive units from the Süphan volcano. We have tested the numerical code VolcFlow to first reproduce the emplacement of the Quaternary Süphan debris avalanche and then to develop a hazard assessment for potential future sector collapses and subsequent emplacement of debris avalanches and associated tsunami. The numerical model captures the main features of the propagation process, including travel distance, lateral spread, and run up. The best fit obtained for the existing flow has a constant retarding stress of 50 kPa and a collapse scar volume of 4 km3. Analysis of potential future collapse scenarios reveals that northern sector debris avalanches (up to 6 km3) could affect several towns. In the case of a sector collapse towards the south, a tsunami will reach the city of Van and several of the biggest towns on the southern shoreline of Lake Van. Cities most affected by the larger amplitude waves would be Van, Edremit, Gevaş, Tatvan, and, to a lesser extent, Erciş, with wave amplitudes (first waves after the onset of the collapse) between 8 and 10 m. Keywords Süphan stratovolcano Eastern anatolia Debris avalanche Tsunami Volcflow

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700