Mixotrophic and heterotrophic growth of some microalgae using extract of fungal-treated wheat bran
详细信息    查看全文
  • 作者:Mostafa M EL-Sheekh (1)
    Mohamed Y Bedaiwy (1)
    Mohamed E Osman (1)
    Mona M Ismail (1)
  • 关键词:Glucose ; Heterotrophic ; Lignocellulosic fungi ; Microalgae ; Mixotrophic ; Wheat bran
  • 刊名:International Journal of Recycling of Organic Waste in Agriculture
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:1
  • 期:1
  • 全文大小:382KB
  • 参考文献:1. Abeliovich A, Weisman D: Role of heterotrophic nutrition in growth of the alga Scenedesmus obliquus in high-rate oxidation ponds. / Appl Environ Microbiol 1978,35(1):32鈥?7.
    2. Becker EW: / Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge; 1994:293.
    3. Bouarab L, Dautab A, Loudikia M: Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration. / Water Res 2004,38(11):2706鈥?712. CrossRef
    4. Chu WL, Phang SM, Hock GS: Influence of carbon source on growth biochemical composition and pigmentation of Ankistrodesmus convolutus. / J Appl Phycol 1995, 7:59鈥?4. CrossRef
    5. Combres C, Laliberte G, Reyssac JS, de LaNoue J: Effect of acetate on growth and ammonium uptake in the microalga Scenedesmus obliquus. / Physiol Plant 1994, 91:729鈥?34. CrossRef
    6. Day JG, Tsavalos AJ: An investigation of heterotrophic culture of the green alga Tetraselmis. / J Appl Phycol 1996, 8:73鈥?7. CrossRef
    7. Devlin RM, Barker AV: / Photosynthesis. Van Nostrand Raeinbold Co., New York; 1971.
    8. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F: Colorimetric method for determination of sugars and related substances. / Anal Chem 1956, 28:350鈥?56. CrossRef
    9. Fott B: / Studies in phycology. Academic Publishing House of Czechoslovak Academy of Science, Prague; 1969.
    10. Gao C, Zhai Y, Ding Y, Wu Q: Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. / Appl Energy 2010,87(3):756鈥?61. CrossRef
    11. Ghonam AA, Sabre NM: / Statistical analysis of data by using SPSS (1999). Dar Kappa Publishing, Cairo; 2000.
    12. Griffiths DJ: The accumulation of carbohydrate in Chlorella vulgaris under heterotrophic conditions. / Ann Bot 1965, 115:347鈥?57.
    13. Hu H, Gao K: Optimization of growth and fatty acid composition of unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. / Biotechnol Lett 2003,25(5):421鈥?25. CrossRef
    14. K眉hl A: Zur physiologie der speicherung kondersierter anorganischer phosphate in Chlorella. / Vortr Botan Hrsg Deut Botan Ges (NF) 1962, 1:157鈥?66.
    15. Lee YH, Fan LT: Kinetic studies of enzymatic hydrolysis of insoluble cellulose II. Analysis of extended hydrolysis times. / Biotechnol Bioeng 1983, 25:939鈥?66. CrossRef
    16. Lowry OH, Roserbrough NJ, Farr LA, Randall RJ: Protein measurements with the folin phenol reagent. / J Biol Chem 1951, 193:265鈥?75.
    17. Liu J, Huang J, Fan KW, Jiang Y, Zhong Y, Sun Z, Chen F: Production potential of Chlorella zofingienesis as a feedstock for biodiesel. / Bioresource Technol 2010,101(2):8658鈥?663. CrossRef
    18. Montant C, Thomas L: Structure d鈥檜n glucane exocellulaire produit par le Botryti cinerea (Pers). / Ann Sci Naturelles Bot 1977, 18:185鈥?92.
    19. Ogawa T, Aiba S: Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. / Biotechnol Bioengng 1981, 23:1121鈥?132. CrossRef
    20. Ogbonna JC, Tanaka H: Production of pure photosynthetic cell biomass for environmental biosensors. / Materials Sci Eng 2000, 12:9鈥?5. CrossRef
    21. Orus MI, Marco E, Martinez F: Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production. / Biores Technol 1991, 38:179鈥?84. CrossRef
    22. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y: Heterotrophic cultures of microalgae: metabolism and potential products. / Water Res 2011, 45:11鈥?6. CrossRef
    23. Prescott GW: / How to know the fresh water algae. WC Brown Company, Dubuque; 1978.
    24. Rabinovich ML, Mel鈥檔ik MS, Bolobova AV: Microbial cellulases. / Prikl Biokhim Mikrobiol 2002,38(4):355鈥?73.
    25. Rosales E, Couto SR, Sanrom谩n M脕: Reutilization of food processing wastes for production of relevant metabolites: application to laccase production by Trametes hirsuta. / J Food Eng 2005, 66:419鈥?23. CrossRef
    26. S谩nchez C: Lignocellulosic residues: biodegradation and bioconversion by fungi. / Biotechnol Adv 2009,27(2):185鈥?94. CrossRef
    27. Sasidharan A, Gnanam A: Immunological identification and quantification of light harvesting chlorophyll a/b protein of Chlorella protothecoides. / Indian J Biochem Biophys 1990,27(1):1鈥?.
    28. Scheerer A, Parthier B: Dark induced chloroplast dedifferentiation in Euglena gracilis. / Planta 1982, 156:274鈥?81. CrossRef
    29. Shamala TR, Drawert F, Leupold G: Studies on Scenedesmus acutus growth. I. Effect of autotrophic and mixotrophic conditions on the growth of Scenedesmus acutus. / Biotech Bioeng 1982, 24:1287鈥?299. CrossRef
    30. Shamala TR, Drawert F, Leupold G: Studies on Scenedesmus acutus growth. II. Effect of autotrophic and mixotrophic growth on the amino acid and carbohydrate composition of Scenedesmus acutus. / Biotech Bioeng 1982, 24:1301鈥?317. CrossRef
    31. Shi XM, Zhang XW, Liu HJ, Chen F: Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. / Process Biochem 1999, 34:341鈥?47. CrossRef
    32. Starr MP, Stolp HG, Schlegel HG, Schlegel A: / The prokaryotes: a handbook of habitats, isolation, and identification of bacteria, volume 1. Springer-Verlag, Berlin; 1981.
    33. Steinman AD, Lamberti GA: Biomass and pigments of benthic algae. In / Methods in stream ecology. Edited by: Hauer FR, Lamberti GA. Academic Press, San Diego; 1996.
    34. Szengyel Z, Zacchi G, Varga A, Reczey K: Cellulase production of Trichoderma reesei RUT C30 using steam-pretreated spruce: hydrolytic potential of cellulases on different substrate. / Appl Biochem Biotechnol 2000, 84鈥?6:679鈥?91. CrossRef
    35. Tanner W: Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system of Chlorella. / Biochem Biophys Res Commun 1969, 36:278鈥?83. CrossRef
    36. Toyama N, Ogawa K: Sugar production from agricultural woody wastes by saccharification with Trichoderma viride cellulase. / Biotechnol Bioeng Symp 1975, 5:225鈥?44.
    37. Ukeles R, Rose WE: Observations on organic carbon utilization by photosynthetic marine microalgae. / Mar Biol 1976, 37:11鈥?8. CrossRef
    38. Varma AK, Tiwari PN: Rhizobium inoculation and oil content of soy bean seeds (Glycine max). / Curr Sci 1967, 20:275.
    39. Villas-B么as SG, Elisa E, David AM: Microbial conversion of lignocellulosic residues for production of animal feeds. / Animal Feed Sci Technol 2002,98(1鈥?):1鈥?2. CrossRef
    40. Wang T, Sun X, Zhou Z, Chen G: Effects of microfluidization process on physicochemical properties of wheat bran. / Food Res Internat 2012,48(2):742鈥?47. CrossRef
    41. Wetherell DF: Culture of fresh water algae in enriched natural seawater. / Plant Physiol (Copenh) 1961, 14:1鈥?. CrossRef
    42. Wood DA: Production and roles of extracellular enzymes during morphogenesis of basidiomycete fungi. In / Developmental biology of higher fungi. Edited by: Moore D, Casselton LA, Wood DA, Frankland JC. Cambridge University Press, Cambridge; 1985:387.
    43. Wood DA, Goodenough PW: Fruiting of Agaricus bisporus. / Arch Microbiol 1977, 114:161鈥?65. CrossRef
    44. Wong MH, Lay CC: The comparison of soy-bean wastes, used tea-leaves and sewage sludge for growing Chlorella pyrenoidosa. Environmental Pollution Series A. / Ecol Biol 1980,23(4):247鈥?59.
    45. Wu Q, Yin S, Sheng G, Fu J: New discoveries in study on liquid hydrocarbons from thermal degradation of heterotrophically yellowing algae. / Science in China (B) 1994, 37:326鈥?35.
    46. Young AJ: Factors that affect the carotenoid composition of higher plants and algae. In / Carotenoids and photosynthesis. Edited by: Young AJ, Britton G. Chapman and Hall, London; 1993:161鈥?05. CrossRef
  • 作者单位:Mostafa M EL-Sheekh (1)
    Mohamed Y Bedaiwy (1)
    Mohamed E Osman (1)
    Mona M Ismail (1)

    1. Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
  • ISSN:2251-7715
文摘
Background In this study, wheat bran, an agricultural waste, was utilized as a low-cost carbon source for algal cultivation. Results Treatment of lignocellulosic waste by two fungal species (Pleurotus ostreatus or Trichoderma viride) caused the accumulation of reducing sugar at a relatively high concentration (50.58 and 54.30 mg/g wheat bran) after 7 days of incubation, respectively. The soluble products of treated wheat bran increased the growth, carbohydrate, and protein contents of both Chlorella vulgaris and Scenedesmus obliquus under mixotrophic and heterotrophic conditions. Conclusions The obtained data suggest that soluble product of treated wheat bran could be used as an efficient medium for the mixotrophic and heterotrophic growth of both algal species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700