Approximation-based integral versus differential isoconversional approaches to the evaluation of kinetic parameters from thermogravimetry
详细信息    查看全文
  • 作者:R. Neglur ; D. Grooff ; E. Hosten ; M. Aucamp…
  • 关键词:Roxithromycin ; Solid ; state kinetics ; Advanced isoconversional ; Differential Friedman
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:123
  • 期:3
  • 页码:2599-2610
  • 全文大小:1,734 KB
  • 参考文献:1.Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J Phys Chem B. 2005;109:10073–80.CrossRef
    2.Gao Z, Nakada M, Amasaki I. A consideration of errors and accuracy in the isoconversional methods. Thermochim Acta. 2001;369:137–42.CrossRef
    3.Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.CrossRef
    4.Šimon P. Isoconversional methods fundamentals, meaning and application. J Therm Anal Calorim. 2004;76:123–32.CrossRef
    5.Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods complex mechanisms and isothermal predicted conversion-time curves. Chemom Intel Lab Syst. 2009;96:219–26.CrossRef
    6.Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.CrossRef
    7.Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.CrossRef
    8.Criado JM, Sánchez-Jiménez PE, Pérez-Maqueda LA. Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim. 2008;92:199–203.CrossRef
    9.Mallet F, Petit S, Lafont S, Billot P, Lemarchand D, Coquerel G. Solvent exchanges among molecular compounds. Two extreme cases of pharmaceutical interest. J Therm Anal Calorim. 2003;73:459–71.CrossRef
    10.Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRef
    11.Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol. 1971;16:22–31.
    12.Senum GI, Yang RT. Rational approximation of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.CrossRef
    13.Flynn JH. The ‘temperature integral’—its use and abuse. Thermochim Acta. 1997;300:83–92.CrossRef
    14.Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of thermally induced reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.CrossRef
    15.APEX 2, SADABS and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA; 2010.
    16.Sheldrick GM. A short history of SHELX. Acta Crystallogr. 2008;A64:112–22.CrossRef
    17.Hübschle CB, Sheldrick GM, Dittrich B. ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr. 2011;44:1281–4.CrossRef
    18.Bērziņš A, Actiņš A. Effect of experimental and sample factors on dehydration kinetics of mildronate dihydrate: mechanism of dehydration and determination of kinetic parameters. J Pharm Sci. 2014;103:1747–55.CrossRef
    19.Aucamp M, Liebenberg W, Strydom SJ, van Tonder EC, de Villiers MM. Physicochemical properties of amorphous roxithromycin prepared by quench cooling of the melt or desolvation of a chloroform solvate. AAPS PharmSciTech. 2012;13:467–76.CrossRef
    20.Sánchez-Jiménez PE, Perejón A, Pérez-Maqueda LA, Criado JM. New insights on the kinetic analysis of isothermal data: the independence of the activation energy from the assumed kinetic model. Energy Fuels. 2015;29:392–7.CrossRef
    21.Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.CrossRef
    22.Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analysing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.CrossRef
    23.Bachet B, Brassy C, Mornon JP. [O-(dioxa-2,5 hexyl) oxime]-9 de l’érythromycine A hydrate. Acta Crystallogr. 1988;C44:112–6.
    24.Holstein JJ, Luger P, Kalinowski R, Mebs S, Paulman C, Dittrich B. Validation of experimental charge densities: refinement of the macrolide antibiotic roxithromycin. Acta Crystallogr. 2010;B66:568–77.CrossRef
    25.Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van der Streek J, Wood PA. Mercury CSD2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41:466–70.CrossRef
    26.Koga N, Criado JM. Kinetic analyses of solid-state reactions with a particle-size distribution. J Am Ceram Soc. 1998;81:2901–9.CrossRef
  • 作者单位:R. Neglur (1)
    D. Grooff (1)
    E. Hosten (1)
    M. Aucamp (2)
    W. Liebenberg (2)

    1. Department of Chemistry, Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa
    2. Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom Campus, Potchefstroom, 2520, South Africa
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
The relative accuracies of approximation-based integral versus differential isoconversional approaches for ‘actual’ E determination were investigated on experimental dehydration data of roxithromycin monohydrate from thermogravimetric (TG) analysis. The dehydration kinetic parameters and the relationship to the structural characteristics of the monohydrate and anhydrate forms from differential scanning calorimetry (DSC) and single-crystal X-ray diffractometry (SC-XRD) are also reported. Integral methods versus the differential Friedman isoconversional method evaluated E correspondences in both iso- and non-isothermal TG methods. The reliability in E from Friedman approached that of estimates from current most accepted integral isoconversional methods and was even superior to methods (for non-isothermal studies) that employ an approximation to the temperature integral (modified Kissinger–Akahira–Sunose, Senum–Yang fourth degree). Structural characterization (DSC, SC-XRD) and kinetic analysis from generalized kinetic master plots concluded that coordinated water occupied interlinked voids in crystal structure which may have facilitated the multidimensional diffusional loss of water upon heating without disruption of the crystal structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700