Pulsed 13C2-Acetate Protein-SIP Unveils Epsilonproteobacteria as Dominant Acetate Utilizers in a Sulfate-Reducing Microbial Community Mineralizing Benzene
详细信息    查看全文
  • 作者:Robert Starke ; Andreas Keller ; Nico Jehmlich ; Carsten Vogt…
  • 关键词:Anaerobic benzene degradation ; Metaproteomics ; Carbon flow
  • 刊名:Microbial Ecology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:71
  • 期:4
  • 页码:901-911
  • 全文大小:700 KB
  • 参考文献:1.Mancini SA, Ulrich AC, Lacrampe-Couloume G, Sleep B, Edwards EA, Lollar BS (2003) Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene. Appl Environ Microbiol 69(1):191–198CrossRef PubMed PubMedCentral
    2.Dean BJ (1985) Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols. Mutation Res 154(3):153–181CrossRef PubMed
    3.Snyder R (2000) Overview of the toxicology of benzene. J Tox Environ Health Part A 61(5-6):339–346. doi:10.​1080/​0098410005016633​4 CrossRef
    4.Christensen TH, Kjeldsen P, Albrechtsen HJ, Heron G, Nielsen PH, Bjerg PL, Holm PE (1994) Attenuation of landfill leachate pollutants in aquifers. Crit Rev Env Sci Tec 24(2):119–202CrossRef
    5.Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron C (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16(7–8):659–718. doi:10.​1016/​S0883-2927(00)00082-2 CrossRef
    6.Grbic-Galic D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53(2):254–260PubMed PubMedCentral
    7.Major DW, Mayfield CI, Barker JF (1988) Biotransformation of benzene by denitrification in aquifer sand. Ground Water 26(1):8–14. doi:10.​1111/​j.​1745-6584.​1988.​tb00362.​x CrossRef
    8.Zhang T, Tremblay PL, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2013) Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol 79(24):7800–7806. doi:10.​1128/​AEM.​03134-13 CrossRef PubMed PubMedCentral
    9.Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12(10):2783–2796. doi:10.​1111/​j.​1462-2920.​2010.​02248.​x PubMed
    10.Ulrich AC, Beller HR, Edwards EA (2005) Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol 39(17):6681–6691CrossRef PubMed
    11.Kunapuli U, Griebler C, Beller HR, Meckenstock RU (2008) Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol 10(7):1703–1712. doi:10.​1111/​j.​1462-2920.​2008.​01588.​x CrossRef PubMed
    12.Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H, Buscot F, Richnow HH, von Bergen M, Seifert J (2012) Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J 6(12):2291–2301.CrossRef PubMed PubMedCentral
    13.Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C (2008) Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol Ecol 66(1):143–157. doi:10.​1111/​j.​1574-6941.​2008.​00536.​x CrossRef PubMed
    14.Fischer A, Gehre M, Breitfeld J, Richnow HH, Vogt C (2009) Carbon and hydrogen isotope fractionation of benzene during biodegradation under sulfate-reducing conditions: a laboratory to field site approach. Rapid Comm Mass Spec 23(16):2439–2447. doi:10.​1002/​rcm.​4049 CrossRef
    15.Herrmann S, Kleinsteuber S, Chatzinotas A, Kuppardt S, Lueders T, Richnow HH, Vogt C (2010) Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ Microbiol 12(2):401–411. doi:10.​1111/​j.​1462-2920.​2009.​02077.​x CrossRef PubMed
    16.Rakoczy J, Schleinitz KM, Müller N, Richnow HH, Vogt C (2011) Effects of hydrogen and acetate on benzene mineralisation under sulphate-reducing conditions. FEMS Microbiol Ecol 77(2):238–247. doi:10.​1111/​j.​1574-6941.​2011.​01101.​x CrossRef PubMed
    17.Vogt C, Godeke S, Treutler HC, Weiss H, Schirmer M, Richnow HH (2007) Benzene oxidation under sulfate-reducing conditions in columns simulating in situ conditions. Biodegradation 18(5):625–636. doi:10.​1007/​s10532-006-9095-1 CrossRef PubMed
    18.Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nature Rev Microbiol 4(6):458–468. doi:10.​1038/​nrmicro1414 CrossRef
    19.Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8(4):269–282. doi:10.​1007/​s00792-004-0386-3 CrossRef PubMed
    20.Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65(1):1–14. doi:10.​1111/​j.​1574-6941.​2008.​00502.​x CrossRef PubMed
    21.Porter ML, Engel AS (2008) Diversity of uncultured Epsilonproteobacteria from terrestrial sulfidic caves and springs. Appl Environ Microbiol 74(15):4973–4977. doi:10.​1128/​AEM.​02915-07 CrossRef PubMed PubMedCentral
    22.Jones DS, Tobler DJ, Schaperdoth I, Mainiero M, Macalady JL (2010) Community structure of subsurface biofilms in the thermal sulfidic caves of Acquasanta Terme, Italy. Appl Environ Microbiol 76(17):5902–5910. doi:10.​1128/​AEM.​00647-10 CrossRef PubMed PubMedCentral
    23.Hamilton TL, Jones DS, Schaperdoth I, Macalady JL (2014) Metagenomic insights into S(0) precipitation in a terrestrial subsurface lithoautotrophic ecosystem. Front Microbiol 5:756. doi:10.​3389/​fmicb.​2014.​00756 PubMed PubMedCentral
    24.Yamamoto M, Takai K (2011) Sulfur metabolisms in epsilon- and gamma-proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2:192. doi:10.​3389/​fmicb.​2011.​00192 CrossRef PubMed PubMedCentral
    25.Nakagawa S, Takaki Y, Shimamura S, Reysenbach AL, Takai K, Horikoshi K (2007) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci U S A 104(29):12146–12150. doi:10.​1073/​pnas.​0700687104 CrossRef PubMed PubMedCentral
    26.Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005) Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7(10):1619–1632. doi:10.​1111/​j.​1462-2920.​2005.​00856.​x CrossRef PubMed
    27.Handley KM, VerBerkmoes NC, Steefel CI, Williams KH, Sharon I, Miller CS, Frischkorn KR, Chourey K, Thomas BC, Shah MB, Long PE, Hettich RL, Banfield JF (2013) Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community. ISME J 7(4):800–816. doi:10.​1038/​ismej.​2012.​148 CrossRef PubMed PubMedCentral
    28.Schirmer M, Dahmke A, Dietrich P, Dietze M, Gödeke S, Richnow HH, Schirmer K, Weiss H, Teutsch G (2006) Natural attenuation research at the contaminated megasite Zeitz. J Hydrol 328(3–4):393–407. doi:10.​1016/​j.​jhydrol.​2005.​12.​019 CrossRef
    29.Benndorf D, Vogt C, Jehmlich N, Schmidt Y, Thomas H, Woffendin G, Shevchenko A, Richnow HH, von Bergen M (2009) Improving protein extraction and separation methods for investigating the metaproteome of anaerobic benzene communities within sediments. Biodegradation 20(6):737–750CrossRef PubMed PubMedCentral
    30.Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685CrossRef PubMed
    31.Jehmlich N, Schmidt F, Hartwich M, von Bergen M, Richnow HH, Vogt C (2008) Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (Protein-SIP). Rapid Comm Mass Spec 22(18):2889–2897. doi:10.​1002/​rcm.​3684 CrossRef
    32.Bozinovski D, Taubert M, Kleinsteuber S, Richnow HH, von Bergen M, Vogt C, Seifert J (2014) Metaproteogenomic analysis of a sulfate-reducing enrichment culture reveals genomic organization of key enzymes in the m-xylene degradation pathway and metabolic activity of proteobacteria. Syst Appl Microbiol 37(7):488–501. doi:10.​1016/​j.​syapm.​2014.​07.​005 CrossRef PubMed
    33.Keller AH, Schleinitz KM, Starke R, Bertilsson S, Vogt C, Kleinsteuber S (2015) Metagenome-based metabolic reconstruction reveals the ecophysiological function of Epsilonproteobacteria in a hydrocarbon-contaminated sulfidic aquifer. Front Microbiol 6:1396. doi:10.​3389/​fmicb.​2015.​01396 CrossRef PubMed PubMedCentral
    34.Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fevre F, Longin C, Mornico D, Roche D, Rouy Z, Salvignol G, Scarpelli C, Thil Smith AA, Weiman M, Medigue C (2013) MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 41(Database issue):D636–D647. doi:10.​1093/​nar/​gks1194 CrossRef PubMed PubMedCentral
    35.Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Medigue C (2006) MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34(1):53–65. doi:10.​1093/​nar/​gkj406 CrossRef PubMed PubMedCentral
    36.Kohlbacher O, Reinert K, Gropl C, Lange E, Pfeifer N, Schulz-Trieglaff O, Sturm M (2007) TOPP—the OpenMS proteomics pipeline. Bioinformatics 23(2):e191–e197. doi:10.​1093/​bioinformatics/​btl299 CrossRef PubMed
    37.Sturm M, Bertsch A, Gropl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O (2008) OpenMS—an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163. doi:10.​1186/​1471-2105-9-163 CrossRef PubMed PubMedCentral
    38.Sachsenberg T, Herbst FA, Taubert M, Kermer R, Jehmlich N, von Bergen M, Seifert J, Kohlbacher O (2014) MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteom Res 14(2):619–627. doi:10.​1021/​pr500245w CrossRef
    39.Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30(10):918–920. doi:10.​1038/​nbt.​2377 CrossRef PubMed PubMedCentral
    40.Herrmann S, Kleinsteuber S, Neu TR, Richnow HH, Vogt C (2008) Enrichment of anaerobic benzene-degrading microorganisms by in situ microcosms. FEMS Microbiol Ecol 63(1):94–106. doi:10.​1111/​j.​1574-6941.​2007.​00401.​x CrossRef PubMed
    41.Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou LX, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, DAndrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390(6658):364–370CrossRef PubMed
    42.Hedderich R, Klimmek O, Kroger A, Dirmeier R, Keller M, Stetter KO (1998) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22(5):353–381. doi:10.​1111/​j.​1574-6976.​1998.​tb00376.​x CrossRef
    43.Frigaard NU, Dahl C (2009) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Phys 54:103–200. doi:10.​1016/​S0065-2911(08)00002-7 CrossRef
    44.Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J 5:156–163PubMed
  • 作者单位:Robert Starke (1) (2)
    Andreas Keller (3) (4)
    Nico Jehmlich (2)
    Carsten Vogt (3)
    Hans H. Richnow (3)
    Sabine Kleinsteuber (4)
    Martin von Bergen (2) (5)
    Jana Seifert (1)

    1. Institute for Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70599, Stuttgart, Germany
    2. Department of Proteomics, Helmholtz-Centre for Environmental Research (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
    3. Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
    4. Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
    5. Department of Metabolomics, Helmholtz-Centre for Environmental Research (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Ecology
    Geoecology and Natural Processes
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1432-184X
文摘
In a benzene-degrading and sulfate-reducing syntrophic consortium, a clostridium affiliated to the genus Pelotomaculum was previously described to ferment benzene while various sulfate-reducing Deltaproteobacteria and a member of the Epsilonproteobacteria were supposed to utilize acetate and hydrogen as key metabolites derived from benzene fermentation. However, the acetate utilization network within this community was not yet unveiled. In this study, we performed a pulsed 13C2-acetate protein stable isotope probing (protein-SIP) approach continuously spiking low amounts of acetate (10 μM per day) in addition to the ongoing mineralization of unlabeled benzene. Metaproteomics revealed high abundances of Clostridiales followed by Syntrophobacterales, Desulfobacterales, Desulfuromonadales, Desulfovibrionales, Archaeoglobales, and Campylobacterales. Pulsed acetate protein-SIP results indicated that members of the Campylobacterales, the Syntrophobacterales, the Archaeoglobales, the Clostridiales, and the Desulfobacterales were linked to acetate utilization in descending abundance. The Campylobacterales revealed the fastest and highest 13C incorporation. Previous experiments suggested that the activity of the Campylobacterales was not essential for anaerobic benzene degradation in the investigated community. However, these organisms were consistently detected in various hydrocarbon-degrading and sulfate-reducing consortia enriched from the same aquifer. Here, we demonstrate that this member of the Campylobacterales is the dominant acetate utilizer in the benzene-degrading microbial consortium.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700