MotorPlex provides accurate variant detection across large muscle genes both in single myopathic patients and in pools of DNA samples
详细信息    查看全文
  • 作者:Marco Savarese (1) (2)
    Giuseppina Di Fruscio (1) (2)
    Margherita Mutarelli (2)
    Annalaura Torella (1)
    Francesca Magri (3)
    Filippo Maria Santorelli (4)
    Giacomo Pietro Comi (3)
    Claudio Bruno (5)
    Vincenzo Nigro (1) (2)

    1. Laboratorio di Genetica Medica
    ; Dipartimento di Biochimica ; Biofisica e Patologia generale ; Seconda Universit脿 degli Studi di Napoli ; Napoli ; Italy
    2. Telethon Institute of Genetics and Medicine
    ; Napoli ; Italy
    3. Dino Ferrari Center
    ; IRCCS Ca鈥?Granda Ospedale Maggiore Policlinico ; Neuroscience Section ; Dipartimento di Fisiopatologia medico-chirurgica e dei trapianti ; Universit脿 di Milano ; Milano ; Italy
    4. Molecular Medicine and Neuromuscular Lab
    ; IRCCS Stella Maris ; Pisa ; Italy
    5. Centro di Miologia e Patologie Neurodegenerative
    ; IRCCS Istituto Giannina Gaslini ; Genova ; Italy
  • 关键词:Next generation sequencing ; Myopathies ; Target sequencing ; Pooling ; Muscular dystrophies
  • 刊名:Acta Neuropathologica Communications
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:2
  • 期:1
  • 全文大小:451 KB
  • 参考文献:1. Kaplan, JC, Hamroun, D (2013) The 2014 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord 23: pp. 1081-1111 CrossRef
    2. Nigro, V, Savarese, M (2014) Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol 33: pp. 1-12
    3. Nigro, V, Aurino, S, Piluso, G (2011) Limb girdle muscular dystrophies: update on genetic diagnosis and therapeutic approaches. Curr Opin Neurol 24: pp. 429-436 CrossRef
    4. Mercuri, E, Muntoni, F (2013) Muscular dystrophies. Lancet 381: pp. 845-860 CrossRef
    5. Leung, DG, Wagner, KR (2013) Therapeutic advances in muscular dystrophy. Ann Neurol 74: pp. 404-411
    6. Sacconi, S, Lemmers, RJ, Balog, J, Vliet, PJ, Lahaut, P, Nieuwenhuizen, MP, Straasheijm, KR, Debipersad, RD, Vos-Versteeg, M, Salviati, L, Casarin, A, Pegoraro, E, Tawil, R, Bakker, E, Tapscott, SJ, Desnuelle, C, Maarel, SM (2013) The FSHD2 gene SMCHD1 is a modifier of disease severity in families affected by FSHD1. Am J Hum Genet 93: pp. 744-751 CrossRef
    7. Nigro, V, Piluso, G (2012) Next generation sequencing (NGS) strategies for the genetic testing of myopathies. Acta Myol 31: pp. 196-200
    8. Metzker, ML (2009) Sequencing technologies - the next generation. Nat Rev Genet 11: pp. 31-46 CrossRef
    9. Yu, Y, Wu, BL, Wu, J, Shen, Y (2012) Exome and whole-genome sequencing as clinical tests: a transformative practice in molecular diagnostics. Clin Chem 58: pp. 1507-1509 CrossRef
    10. Beaulieu, CL, Majewski, J, Schwartzentruber, J, Samuels, ME, Fernandez, BA, Bernier, FP, Brudno, M, Knoppers, B, Marcadier, J, Dyment, D, Adam, S, Bulman, DE, Jones, SJ, Avard, D, Nguyen, MT, Rousseau, F, Marshall, C, Wintle, RF, Shen, Y, Scherer, SW, Canada Consortium, FORGE, Friedman, JM, Michaud, JL, Boycott, KM (2014) FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project. Am J Hum Genet 94: pp. 809-817 CrossRef
    11. Gilissen, C, Hoischen, A, Brunner, HG, Veltman, JA (2012) Disease gene identification strategies for exome sequencing. Eur J Hum Genet 20: pp. 490-497 CrossRef
    12. Roscioli, T, Kamsteeg, EJ, Buysse, K, Maystadt, I, Reeuwijk, J, Elzen, C, Beusekom, E, Riemersma, M, Pfundt, R, Vissers, LE, Schraders, M, Altunoglu, U, Buckley, MF, Brunner, HG, Grisart, B, Zhou, H, Veltman, JA, Gilissen, C, Mancini, GM, Delr茅e, P, Willemsen, MA, Ramad啪a, DP, Chitayat, D, Bennett, C, Sheridan, E, Peeters, EA, Tan-Sindhunata, GM, Die-Smulders, CE, Devriendt, K, Kayserili, H, El-Hashash, OA (2012) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of alpha-dystroglycan. Nat Genet 44: pp. 581-585 CrossRef
    13. Torella, A, Fanin, M, Mutarelli, M, Peterle, E, Vecchio Blanco, F, Rispoli, R, Savarese, M, Garofalo, A, Piluso, G, Morandi, L, Ricci, G, Siciliano, G, Angelini, C, Nigro, V (2013) Next-generation sequencing identifies transportin 3 as the causative gene for LGMD1F. PLoS One 8: pp. e63536 CrossRef
    14. Harms, MB, Sommerville, RB, Allred, P, Bell, S, Ma, D, Cooper, P, Lopate, G, Pestronk, A, Weihl, CC, Baloh, RH (2012) Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann Neurol 71: pp. 407-416 CrossRef
    15. Johnston, JJ, Rubinstein, WS, Facio, FM, Ng, D, Singh, LN, Teer, JK, Mullikin, JC, Biesecker, LG (2012) Secondary variants in individuals undergoing exome sequencing: screening of 572 individuals identifies high-penetrance mutations in cancer-susceptibility genes. Am J Hum Genet 91: pp. 97-108 CrossRef
    16. Rehm, HL, Bale, SJ, Bayrak-Toydemir, P, Berg, JS, Brown, KK, Deignan, JL, Friez, MJ, Funke, BH, Hegde, MR, Lyon, E (2013) ACMG clinical laboratory standards for next-generation sequencing. Genet Med 15: pp. 733-747 CrossRef
    17. Yang, Y, Muzny, DM, Reid, JG, Bainbridge, MN, Willis, A, Ward, PA, Braxton, A, Beuten, J, Xia, F, Niu, Z, Hardison, M, Person, R, Bekheirnia, MR, Leduc, MS, Kirby, A, Pham, P, Scull, J, Wang, M, Ding, Y, Plon, SE, Lupski, JR, Beaudet, AL, Gibbs, RA, Eng, CM (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 369: pp. 1502-1511 CrossRef
    18. Rehm, HL (2013) Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet 14: pp. 295-300 CrossRef
    19. Berglund, EC, Lindqvist, CM, Hayat, S, 脰vern盲s, E, Henriksson, N, Nordlund, J, Wahlberg, P, Forestier, E, L枚nnerholm, G, Syv盲nen, AC (2013) Accurate detection of subclonal single nucleotide variants in whole genome amplified and pooled cancer samples using HaloPlex target enrichment. BMC Genomics 14: pp. 856 CrossRef
    20. Desai, AN, Jere, A (2012) Next-generation sequencing: ready for the clinics?. Clin Genet 81: pp. 503-510 CrossRef
    21. Mutarelli M, Marwah VS, R R, Carrella D, Dharmalingam G, Oliva G, di Bernardo D (2014) A community-based resource for automatic exome variant-calling and annotation in Mendelian disorders. BMC Genomics 15: doi: 10.1186/1471-2164-15-s3-s5
    22. Li, H, Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: pp. 1754-1760 CrossRef
    23. DePristo, MA, Banks, E, Poplin, R, Poplin, R, Garimella, KV, Maguire, JR, Hartl, C, Philippakis, AA, Angel, G, Rivas, MA, Hanna, M, McKenna, A, Fennell, TJ, Kernytsky, AM, Sivachenko, AY, Cibulskis, K, Gabriel, SB, Altshuler, D, Daly, MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: pp. 491-498 CrossRef
    24. Wang, K, Li, M, Hakonarson, H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38: pp. e164 CrossRef
    25. Pruitt, KD, Tatusova, T, Brown, GR, Maglott, DR (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40: pp. D130-135 CrossRef
    26. Sherry, ST, Ward, MH, Kholodov, M, Baker, J, Phan, L, Smigielski, EM, Sirotkin, K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29: pp. 308-311 CrossRef
    27. Abecasis, GR, Altshuler, D, Auton, A, Brooks, LD, Durbin, RM, Gibbs, RA, Hurles, ME, McVean, GA (2010) A map of human genome variation from population-scale sequencing. Nature 467: pp. 1061-1073 CrossRef
    28. Pollard, KS, Hubisz, MJ, Rosenbloom, KR, Siepel, A (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20: pp. 110-121 CrossRef
    29. Goode, DL, Cooper, GM, Schmutz, J, Dickson, M, Gonzales, E, Tsai, M, Karra, K, Davydov, E, Batzoglou, S, Myers, RM, Sidow, A (2010) Evolutionary constraint facilitates interpretation of genetic variation in resequenced human genomes. Genome Res 20: pp. 301-310 CrossRef
    30. Liu, X, Jian, X, Boerwinkle, E (2011) dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat 32: pp. 894-899 CrossRef
    31. Schwarz, JM, Rodelsperger, C, Schuelke, M, Seelow, D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7: pp. 575-576 CrossRef
    32. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet, Chapter 7: Unit7 20
    33. Kumar, P, Henikoff, S, Ng, PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4: pp. 1073-1081 CrossRef
    34. Thorvaldsdottir, H, Robinson, JT, Mesirov, JP (2012) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14: pp. 178-192 CrossRef
    35. Laing, NG (2012) Genetics of neuromuscular disorders. Crit Rev Clin Lab Sci 49: pp. 33-48 CrossRef
    36. Cirak, S, Foley, AR, Herrmann, R, Willer, T, Yau, S, Stevens, E, Torelli, S, Brodd, L, Kamynina, A, Vondracek, P, Roper, H, Longman, C, Korinthenberg, R, Marrosu, G, N眉rnberg, P, Michele, DE, Plagnol, V, Hurles, M, Moore, SA, Sewry, CA, Campbell, KP, Voit, T, Muntoni, F (2013) ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. Brain 136: pp. 269-281 CrossRef
    37. Logan, CV, Lucke, B, Pottinger, C, Abdelhamed, ZA, Parry, DA, Szymanska, K, Diggle, CP, Riesen, A, Morgan, JE, Markham, G, Ellis, I, Manzur, AY, Markham, AF, Shires, M, Helliwell, T, Scoto, M, H眉bner, C, Bonthron, DT, Taylor, GR, Sheridan, E, Muntoni, F, Carr, IM, Schuelke, M, Johnson, CA (2011) Mutations in MEGF10, a regulator of satellite cell myogenesis, cause early onset myopathy, areflexia, respiratory distress and dysphagia (EMARDD). Nat Genet 43: pp. 1189-1192 CrossRef
    38. Sarparanta, J, Jonson, PH, Golzio, C, Sandell, S, Luque, H, Screen, M, McDonald, K, Stajich, JM, Mahjneh, I, Vihola, A, Raheem, O, Penttil盲, S, Lehtinen, S, Huovinen, S, Palmio, J, Tasca, G, Ricci, E, Hackman, P, Hauser, M, Katsanis, N, Udd, B (2012) Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet 44: pp. 450-455 CrossRef
    39. Vasli, N, B枚hm, J, Gras, S, Muller, J, Pizot, C, Jost, B, Echaniz-Laguna, A, Laugel, V, Tranchant, C, Bernard, R, Plewniak, F, Vicaire, S, Levy, N, Chelly, J, Mandel, JL, Biancalana, V, Laporte, J (2012) Next generation sequencing for molecular diagnosis of neuromuscular diseases. Acta Neuropathol 124: pp. 273-283 CrossRef
    40. Chen, X, Listman, JB, Slack, FJ, Gelernter, J, Zhao, H (2012) Biases and errors on allele frequency estimation and disease association tests of next-generation sequencing of pooled samples. Genet Epidemiol 36: pp. 549-560 CrossRef
  • 刊物主题:Neurosciences;
  • 出版者:BioMed Central
  • ISSN:2051-5960
文摘
Mutations in ~100 genes cause muscle diseases with complex and often unexplained genotype/phenotype correlations. Next-generation sequencing studies identify a greater-than-expected number of genetic variations in the human genome. This suggests that existing clinical monogenic testing systematically miss very relevant information. We have created a core panel of genes that cause all known forms of nonsyndromic muscle disorders (MotorPlex). It comprises 93 loci, among which are the largest and most complex human genes, such as TTN, RYR1, NEB and DMD. MotorPlex captures at least 99.2% of 2,544 exons with a very accurate and uniform coverage. This quality is highlighted by the discovery of 20-30% more variations in comparison with whole exome sequencing. The coverage homogeneity has also made feasible to apply a cost-effective pooled sequencing strategy while maintaining optimal sensitivity and specificity. We studied 177 unresolved cases of myopathies for which the best candidate genes were previously excluded. We have identified known pathogenic variants in 52 patients and potential causative ones in further 56 patients. We have also discovered 23 patients showing multiple true disease-associated variants suggesting complex inheritance. Moreover, we frequently detected other nonsynonymous variants of unknown significance in the largest muscle genes. Cost-effective combinatorial pools of DNA samples were similarly accurate (97-99%). MotorPlex is a very robust platform that overcomes for power, costs, speed, sensitivity and specificity the gene-by-gene strategy. The applicability of pooling makes this tool affordable for the screening of genetic variability of muscle genes also in a larger population. We consider that our strategy can have much broader applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700