Robust principal component analysis via truncated nuclear norm minimization
详细信息    查看全文
文摘
Robust principal component analysis (PCA) is widely used in many applications, such as image processing, data mining and bioinformatics. The existing methods for solving the robust PCA are mostly based on nuclear norm minimization. Those methods simultaneously minimize all the singular values, and thus the rank cannot be well approximated in practice. We extend the idea of truncated nuclear norm regularization (TNNR) to the robust PCA and consider truncated nuclear norm minimization (TNNM) instead of nuclear norm minimization (NNM). This method only minimizes the smallest N − r singular values to preserve the low-rank components, where N is the number of singular values and r is the matrix rank. Moreover, we propose an effective way to determine r via the shrinkage operator. Then we develop an effective iterative algorithm based on the alternating direction method to solve this optimization problem. Experimental results demonstrate the efficiency and accuracy of the TNNM method. Moreover, this method is much more robust in terms of the rank of the reconstructed matrix and the sparsity of the error.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700