Optokinetic circular vection: a test of visual–vestibular conflict models of vection nascensy
详细信息    查看全文
  • 作者:R. Jürgens ; K. Kliegl ; J. Kassubek ; W. Becker
  • 关键词:Circular vection ; Visual–vestibular conflict ; Conflict models ; Vestibular time constant ; Vestibular threshold ; Optokinetic weight
  • 刊名:Experimental Brain Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:234
  • 期:1
  • 页码:67-81
  • 全文大小:696 KB
  • 参考文献:Arshad Q, Nigmatullina Y, Bronstein AM (2013) Handedness-related cortical modulation of the vestibular-ocular reflex. J Neurosci 33:3221–3227PubMed CrossRef
    Barr CC, Schultheis LW, Robinson DA (1976) Voluntary, non-visual control of the human vestibulo-ocular reflex. Acta Otolaryngol (Stockh) 81:365–375
    Becker W, Raab S, Jürgens R (2002) Circular vection during voluntary suppression of optokinetic reflex. Exp Brain Res 144:554–557PubMed CrossRef
    Benson AJ, Hutt EC, Brown SF (1989) Thresholds for the perception of whole body angular movement about a vertical axis. Aviat Space Environ Med 60:205–213PubMed
    Bertolini G, Ramat S, Laurens J, Bockisch CJ, Marti S, Straumann D, Palla A (2011) Velocity storage contribution to vestibular self-motion perception in healthy human subjects. J Neurophysiol 105:209–223PubMed CrossRef
    Borah J, Young LR, Curry RE (1988) Optimal estimator model for human spatial orientation. Ann N Y Acad Sci 545:51–73PubMed CrossRef
    Brandt T, Dichgans J, Koenig E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16:476–491PubMed CrossRef
    Büttner U, Waespe W (1981) Vestibular nerve activity in the alert monkey during vestibular and optokinetic nystagmus. Exp Brain Res 41:310–315PubMed
    Büttner U, Henn V, Oswald HP (1977) Vestibular-related neuronal activity in the thalamus of the alert monkey during sinusoidal rotation in the dark. Exp Brain Res 30:435–444PubMed
    Darlington CL, Smith PF (1998) Further evidence for gender differences in circularvection. J Vestib Res 8:151–153PubMed CrossRef
    de Winkel KN, Soyka F, Barnett-Cowan M, Bulthoff HH, Groen EL, Werkhoven PJ (2013) Integration of visual and inertial cues in the perception of angular self-motion. Exp Brain Res 231:209–218PubMed CrossRef
    Dichgans J, Brandt T (1972) Visual–vestibular interaction and motion perception. Bibl Ophthalmol 82:327–338PubMed
    Dichgans J, Brandt T (1978) Visual–vestibular interaction: effects on self-motion perception and postural control. In: Held R, Leibowitz HW, Teuber H-L (eds) Handbook of sensory physiology perception, vol VIII. Springer, Berlin, pp 755–804
    Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral system. J Neurophysiol 34:661–675PubMed
    Fischer MH, Kornmüller AE (1930) Optokinetisch ausgelöste Bewegungswahrnehmungen und optokinetischer Nystagmus. J Psychol Neurol 41:273–308
    Grabherr L, Nicoucar K, Mast FW, Merfeld DM (2008) Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency. Exp Brain Res 186:677–681PubMed CrossRef
    Howard IP, Howard I (1994) Vection: the contribution of absolute and relative visual motion. Perception 23:745–751PubMed CrossRef
    Jürgens R, Becker W (2011) Human spatial orientation in non-stationary environments: relation between self-turning perception and detection of surround motion. Exp Brain Res 215:327–344PubMed CrossRef
    Kennedy RS, Hettinger LJ, Harm DL, Ordy JM, Dunlap WP (1996) Psychophysical scaling of circular vection (CV) produced by optokinetic (OKN) motion: individual differences and effects of practice. J Vestib Res 6:331–341PubMed CrossRef
    Keshavarz B, Hettinger LJ, Vena D, Campos JL (2014) Combined effects of auditory and visual cues on the perception of vection. Exp Brain Res 232:827–836PubMed CrossRef
    Lambrey S, Berthoz A (2003) Combination of conflicting visual and non-visual information for estimating actively performed body turns in virtual reality. Int J Psychophysiol 50:101–115PubMed CrossRef
    Lepecq JC, Giannopulu I, Mertz S, Baudonniere PM (1999) Vestibular sensitivity and vection chronometry along the spinal axis in erect man. Perception 28:63–72PubMed CrossRef
    Magnin M, Fuchs AF (1977) Discharge properties of neurons in the monkey thalamus tested with angular acceleration, eye movement and visual stimuli. Exp Brain Res 28:293–299PubMed
    Marlinski V, McCrea RA (2008) Activity of ventroposterior thalamus neurons during rotation and translation in the horizontal plane in the alert squirrel monkey. J Neurophysiol 99:2533–2545PubMed CrossRef
    Melcher GA, Henn V (1981) The latency of circular vection during different acceleration of the optokinetic stimulus. Percept Psychophs 30:552–556CrossRef
    Meng H, May PJ, Dickman JD, Angelaki DE (2007) Vestibular signals in primate thalamus: properties and origins. J Neurosci 27:13590–13602PubMed CrossRef
    Merfeld DM (2011) Signal detection theory and vestibular thresholds: I. Basic theory and practical considerations. Exp Brain Res 210:389–405PubMed PubMedCentral CrossRef
    Mergner T, Rumberger A, Becker W (1996) Is perceived angular displacement the time integral of perceived angular velocity? Brain Res Bull 40:467–470PubMed CrossRef
    Mergner T, Schweigart G, Müller M, Hlavacka F, Becker W (2000) Visual contributions to human self-motion perception during horizontal body rotation. Arch Ital Biol 138:139–166PubMed
    Mittelstaedt M-L, Mittelstaedt H (1996) The influence of otoliths and somatic graciceptors on angular velocity estimation. J Vestib Res 6:355–366PubMed CrossRef
    Okada T, Grunfeld E, Shallo-Hoffmann J, Bronstein AM (1999) Vestibular perception of angular velocity in normal subjects and in patients with congenital nystagmus. Brain 122:1293–1303PubMed CrossRef
    Peterka RJ, Black FO, Schoenhoff MB (1990) Age-related changes in human vestibulo-ocular and optokinetic reflexes: pseudorandom rotation test. J Vestib Res 1:61–71PubMed
    Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35:229–248PubMed CrossRef
    Riecke BE, Schulte-Pelkum J, Avraamides MN, von der Heyde M, Bülthoff HH (2006) Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Trans Appl Percept 3:194–216CrossRef
    Robinson RA (1977) Vestibular and optokinetic symbiosis: an example of explaining by modelling. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Elsevier Noth-Holland Biomedical Press, Amsterdam, New York, pp 49–58
    Sinha N, Zaher N, Shaikh AG, Lasker AG, Zee DS, Tarnutzer AA (2008) Perception of self motion during and after passive rotation of the body around an earth-vertical axis. Prog Brain Res 171:277–281PubMed CrossRef
    Soyka F, Giordano PR, Barnett-Cowan M, Bülthoff HH (2012) Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles. Exp Brain Res 220:89–99PubMed PubMedCentral CrossRef
    Tarnutzer AA, Lasker AG, Zee DS (2013) Continuous theta-burst stimulation of the right superior temporal gyrus impairs self-motion perception. Exp Brain Res 230:359–370PubMed CrossRef
    Telban RJ, Cardullo FM (2001) An integrated model of human motion perception with visual–vestibular interaction. In: Modelling and simulation technologies conference Montreal, AIAA-2001-4249. American Institute of Aeronautics and Astronautics. AIAA proceedings, 2001
    Wong SC, Frost BJ (1981) The effect of visual–vestibular conflict on the latency of steady-state visually induced subjective rotation. Percept Psychophys 30:228–236PubMed CrossRef
    Wright WG, DiZio P, Lackner JR (2006) Perceived self-motion in two visual contexts: dissociable mechanisms underlie perception. J Vestib Res 16:23–28PubMed
    Young LR, Oman CM (1974) Influence of head position and field on visually induced motion. In: Proceedings of the 10th annual conference on manual control, Wright Patterson AFB, Ohio, vol 86, pp 319–340. AFIT/AFFD Report AD-A134885
    Zacharias GL, Young LR (1981) Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Exp Brain Res 41:159–171PubMed CrossRef
  • 作者单位:R. Jürgens (1)
    K. Kliegl (2)
    J. Kassubek (1) (3)
    W. Becker (1)

    1. Sektion Neurophysiologie, Universität Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
    2. Abteilung Allgemeine Psychologie, Universität Ulm, Ulm, Germany
    3. Klinik für Neurologie, Universität Ulm, Ulm, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1106
文摘
The propensity to experience circular vection (the illusory perception of self-turning evoked by a rotating scene, CV) as reflected by its onset latency exhibits considerable interindividual variation. Models of CV nascensy have linked this delay to the time it takes the visual–vestibular conflict to disappear. One line of these “conflict models” (Zacharias and Young in Exp Brain Res 41:159–171, 1981) predicts that, across individuals, CV latency (CVL) correlates positively with the vestibular time constant (TC) and negatively with the vestibular motion detection threshold (vTHR). A second type of models (Mergner et al. in Arch Ital Biol 138:139–166, 2000) predicts only an increase in CVL with TC. We here examine which of these predictions can be experimentally substantiated. Also, we ask whether the relative weight W O of the optokinetic contribution to the perception of real self-turning could also be a factor influencing CVL. We conducted 5 experiments in 29 subjects measuring: (1) CVL, (2) the TCs of velocity perception and of accompanying nystagmus during rotation in darkness and (3) likewise for displacement perception, (4) vTHR, and (5) W O as revealed by discordant visual–vestibular stimulation. CVL correlated with the nystagmus TC recorded during velocity estimation but with none of the other vestibular TCs nor with vTHR. Confirming earlier findings, CVL shortened with rising scene velocity. Finally, CVL correlated inversely with W O: the larger an individual’s optokinetic weight, the shorter was his CVL. Taken together, our data favour the second type of models which invoke an antagonism between CV inhibition by the optokinetic–vestibular conflict and disinhibition by optokinetic stimulation. Idiosyncratic factors appear to strongly modulate the balance between inhibition and disinhibition, thus increasing CVL variability and obscuring the expected relation between CVL and TC. Keywords Circular vection Visual–vestibular conflict Conflict models Vestibular time constant Vestibular threshold Optokinetic weight

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700