Podokinetic circular vection: characteristics and interaction with optokinetic circular vection
详细信息    查看全文
  • 作者:W. Becker ; K. Kliegl ; J. Kassubek ; R. Jürgens
  • 刊名:Experimental Brain Research
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:234
  • 期:7
  • 页码:2045-2058
  • 全文大小:890 KB
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1106
  • 卷排序:234
文摘
Stabilising horizontal body orientation in space without sight on a rotating platform by holding to a stationary structure and circular ‘treadmill’ stepping in the opposite direction can elicit an illusion of self-turning in space (Bles and Kapteyn in Agressologie 18:325–328, 1977). Because this illusion is analogous to the well-known illusion of optokinetic circular vection (oCV), we call it ‘podokinetic circular vection’ (pCV) here. Previous studies using eccentric stepping on a path tangential to the rotation found that pCV was always contraversive relative to platform rotation. In contrast, when our subjects stepped at the centre of rotation about their vertical axis, we observed an inverted, ipsiversive pCV as a reproducible trait in many of our subjects. This ipCV occurred at the same latency as the pCV of subjects reporting the actually expected contraversive direction, but had lower gain. In contrast to pCV, the nystagmus accompanying circular treadmill stepping had the same direction in all individuals (slow phase in the direction of platform motion). The direction of an individual’s pCV predicted the characteristics of the CV resulting from combined opto- and podokinetic stimulation (circular treadmill stepping while viewing a pattern rotating together with the platform): in individuals with contraversive pCV, latency shortened and both gain and felt naturalness increased in comparison with pure oCV, whereas the opposite (longer latency, reduced gain and naturalness) occurred in individuals with ipCV. Taken together, the reproducibility of ipCV, the constant direction of nystagmus and the fact that pCV direction predicts the outcome of combined stimulation suggest that ipCV is an individual trait of many subjects during compensatory stepping at the centre of rotation. A hypothetical model is presented of how ipCV possibly could arise.KeywordsCircular vectionOptokinetic stimulationPodokinetic stimulationBimodal stimulationCircular treadmill steppingInverted vection

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700