Early reduction in tumour [18F]fluorothymidine (FLT) uptake in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy alone
详细信息    查看全文
  • 作者:Ioannis Trigonis (1)
    Pek Keng Koh (2)
    Ben Taylor (3)
    Mahbubunnabi Tamal (1)
    David Ryder (3)
    Mark Earl (3)
    Jose Anton-Rodriguez (1)
    Kate Haslett (2) (3)
    Helen Young (4)
    Corinne Faivre-Finn (2) (3)
    Fiona Blackhall (2) (3)
    Alan Jackson (1)
    Marie-Claude Asselin (1)
  • 关键词:[18F]Fluorothymidine PET ; Non ; small cell lung cancer ; Radiotherapy ; Early response monitoring
  • 刊名:European Journal of Nuclear Medicine and Molecular Imaging
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:41
  • 期:4
  • 页码:682-693
  • 全文大小:1,159 KB
  • 参考文献:1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol 2001;2:533-3. CrossRef
    2. Price A. Lung cancer 5: state of the art radiotherapy for lung cancer. Thorax 2003;58:447-2. CrossRef
    3. Bayman NA, Blackhall F, Jain P, Lee L, Thatcher N, Faivre-Finn C. Management of unresectable stage III non-small-cell lung cancer with combined-modality therapy: a review of the current literature and recommendations for treatment. Clin Lung Cancer 2008;9:92-01. CrossRef
    4. Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, Belderbos J, Clamon G, Ulutin HC, Paulus R, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 2010;28:2181-0.
    5. Tan DS, Thomas GV, Garrett MD, Banerji U, de Bono JS, Kaye SB, et al. Biomarker-driven early clinical trials in oncology: a paradigm shift in drug development. Cancer J 2009;15:406-0. CrossRef
    6. Seddon BM, Workman P. The role of functional and molecular imaging in cancer drug discovery and development. Br J Radiol 2003;76(76 Spec No 2):S128-8. CrossRef
    7. Weber WA, Wieder H. Monitoring chemotherapy and radiotherapy of solid tumors. Eur J Nucl Med Mol Imaging 2006;33 Suppl 1:27-7. CrossRef
    8. Riesterer O, Milas L, Ang KK. Use of molecular biomarkers for predicting the response to radiotherapy with or without chemotherapy. J Clin Oncol 2007;25:4075-3. CrossRef
    9. Chau CH, Rixe O, McLeod H, Figg WD. Validation of analytic methods for biomarkers used in drug development. Clin Cancer Res 2008;14:5967-6. CrossRef
    10. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 2011;11:239-3. CrossRef
    11. Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med 2008;49 Suppl 2:64S-0. CrossRef
    12. Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P, et al. In vivo validation of 3′deoxy-3-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 2002;8:3315-3.
    13. Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, et al. Kinetic analysis of 3-deoxy-3-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 2005;46:274-2.
    14. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 2003;44:1426-1.
    15. Yamamoto Y, Nishiyama Y, Ishikawa S, Nakano J, Chang SS, Bandoh S, et al. Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007;34:1610-. CrossRef
    16. Brockenbrough JS, Souquet T, Morihara JK, Stern JE, Hawes SE, Rasey JS, et al. Tumor 3-deoxy-3-(18)F-fluorothymidine ((18)F-FLT) uptake by PET correlates with thymidine kinase 1 expression: static and kinetic analysis of (18)F-FLT PET studies in lung tumors. J Nucl Med 2011;52:1181-. CrossRef
    17. Sugiyama M, Sakahara H, Sato K, Harada N, Fukumoto D, Kakiuchi T, et al. Evaluation of 3-deoxy-3-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med 2004;45:1754-.
    18. Yang YJ, Ryu JS, Kim SY, Oh SJ, Im KC, Lee H, et al. Use of 3-deoxy-3-[18F]fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur J Nucl Med Mol Imaging 2006;33:412-. CrossRef
    19. Pan MH, Huang SC, Liao YP, Schaue D, Wang CC, Stout DB, et al. FLT-PET imaging of radiation responses in murine tumors. Mol Imaging Biol 2008;10:325-4. CrossRef
    20. Murayama C, Harada N, Kakiuchi T, Fukumoto D, Kamijo A, Kawaguchi AT, et al. Evaluation of D-18F-FMT, 18F-FDG, L-11C-MET, and 18F-FLT for monitoring the response of tumors to radiotherapy in mice. J Nucl Med 2009;50:290-. CrossRef
    21. Everitt S, Hicks RJ, Ball D, Kron T, Schneider-Kolsky M, Walter T, et al. Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2009;75:1098-04. CrossRef
    22. Vera P, Bohn P, Edet-Sanson A, Salles A, Hapdey S, Gardin I, et al. Simultaneous positron emission tomography (PET) assessment of metabolism with (18)F-fluoro-2-deoxy-d-glucose (FDG), proliferation with (18)F-fluoro-thymidine (FLT), and hypoxia with (18)fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study. Radiother Oncol 2011;98:109-6. CrossRef
    23. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228-7. CrossRef
    24. Machulla HJ, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR. Simplified labeling approach for synthesizing 3-deoxy-3-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 2000;243:843-. CrossRef
    25. Levitt SH. Technical basis of radiation therapy: practical clinical applications. 4th rev. ed. Berlin: Springer; 2006. CrossRef
    26. Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, et al. Reproducibility of 18F-FDG and 3-deoxy-3-18F-fluorothymidine PET tumor volume measurements. J Nucl Med 2010;51:1368-6. CrossRef
    27. Frings V, de Langen AJ, Smit EF, van Velden FH, Hoekstra OS, van Tinteren H, Boellaard R. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med 2010;51:1870-7.
    28. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3-deoxy-3-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 2007;34:1339-7. CrossRef
    29. de Langen AJ, Klabbers B, Lubberink M, Boellaard R, Spreeuwenberg MD, Slotman BJ, et al. Reproducibility of quantitative 18F-3-deoxy-3-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging 2009;36:389-5. CrossRef
    30. Shields AF, Lawhorn-Crews JM, Briston DA, Zalzala S, Gadgeel S, Douglas KA, et al. Analysis and reproducibility of 3-deoxy-3-[18F]fluorothymidine positron emission tomography imaging in patients with non-small cell lung cancer. Clin Cancer Res 2008;14:4463-. CrossRef
    31. de Langen AJ, Vincent A, Velasquez LM, van Tinteren H, Boellaard R, Shankar LK, et al. Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med 2012;53:701-. CrossRef
    32. Dewalle-Vignion AS, Yeni N, Petyt G, Verscheure L, Huglo D, Béron A, et al. Evaluation of PET volume segmentation methods: comparisons with expert manual delineations. Nucl Med Commun 2012;33:34-2. CrossRef
    33. Hamill JJ, Bosmans G, Dekker A. Respiratory-gated CT as a tool for the simulation of breathing artifacts in PET and PET/CT. Med Phys 2008;35:576-5. CrossRef
    34. El Naqa I, Low DA, Bradley JD, Vicic M, Deasy JO. Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods. Med Phys 2006;33:3587-00. CrossRef
  • 作者单位:Ioannis Trigonis (1)
    Pek Keng Koh (2)
    Ben Taylor (3)
    Mahbubunnabi Tamal (1)
    David Ryder (3)
    Mark Earl (3)
    Jose Anton-Rodriguez (1)
    Kate Haslett (2) (3)
    Helen Young (4)
    Corinne Faivre-Finn (2) (3)
    Fiona Blackhall (2) (3)
    Alan Jackson (1)
    Marie-Claude Asselin (1)

    1. Institute of Population Health, Wolfson Molecular Imaging Centre, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, M20 3LJ, UK
    2. Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, M20 4BX, UK
    3. The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
    4. AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, SK10 4TG, UK
  • ISSN:1619-7089
文摘
Purpose Changes in tumour 3-deoxy-3-[18F]fluorothymidine (FLT) uptake during concurrent chemo-radiotherapy in patients with non-small cell lung cancer (NSCLC) have been reported, at variable time points, in two pilot positron emission tomography (PET) studies. The aim of this study was to assess whether FLT changes occur early in response to radiotherapy (RT) without concurrent chemotherapy and whether such changes exceed test-retest variability. Methods Sixteen patients with NSCLC, scheduled to have radical RT, underwent FLT PET once/twice at baseline to assess reproducibility and/or after 5-1 RT fractions to evaluate response. Primary and nodal malignant lesions were manually delineated on CT and volume, mean and maximum standardized uptake values (SUVmean and SUVmax) estimated. Analysis included descriptive statistics and parameter fitting to a mixed-effects model accounting for patients having different numbers of evaluable lesions. Results In all, 35 FLT PET scans from 7 patients with a total of 18 lesions and 12 patients with a total of 30 lesions were evaluated for reproducibility and response, respectively. SUVmean reproducibility in primary tumours (SD 8.9?%) was better than SUVmax reproducibility (SD 12.6?%). In nodes, SUVmean and SUVmax reproducibilities (SD 18.0 and 17.2?%) were comparable but worse than for primary tumours. After 5-1 RT fractions, primary tumour SUVmean decreased significantly by 25?% (p--.0001) in the absence of significant volumetric change, whereas metastatic nodes decreased in volume by 31?% (p--.020) with a larger SUVmean decrease of 40?% (p-lt;-.0001). Similar changes were found for SUVmax. Conclusion Across this group of NSCLC patients, RT induced an early, significant decrease in lesion FLT uptake exceeding test-retest variability. This effect is variable between patients, appears distinct between primary and metastatic nodal lesions, and in primary tumours is lower than previously reported for concurrent chemo-RT at a similar time point. These results confirm the potential for FLT PET to report early on radiation response and to enhance the clinical development of novel drug-radiation combinations by providing an interpretable, early pharmacodynamic end point.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700