Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation
详细信息    查看全文
  • 作者:Corrine J Porter (1)
    Jacqueline M Matthews (2)
    Joel P Mackay (2)
    Sharon E Pursglove (2)
    Jason W Schmidberger (1)
    Peter J Leedman (3)
    Stephanie C Pero (4)
    David N Krag (4)
    Matthew CJ Wilce (5)
    Jacqueline A Wilce (5)
  • 刊名:BMC Structural Biology
  • 出版年:2007
  • 出版时间:December 2007
  • 年:2007
  • 卷:7
  • 期:1
  • 全文大小:1774KB
  • 参考文献:1. Pawson T: Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. / Cell 2004,116(2):191-03. CrossRef
    2. Bell HS, Ryan KM: Intracellular signalling and cancer: complex pathways lead to multiple targets. / Eur J Cancer 2005,41(2):206-15. CrossRef
    3. Traxler P: Tyrosine kinases as targets in cancer therapy - successes and failures. / Expert Opin Ther Targets 2003,7(2):215-34. CrossRef
    4. Faivre S, Djelloul S, Raymond E: New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. / Semin Oncol 2006,33(4):407-20. CrossRef
    5. Wakeling AE: Inhibitors of growth factor signalling. / Endocrine-Related Cancer 2005, 12 Suppl 1:S183-. CrossRef
    6. Holt LJ, Siddle K: Grb10 and Grb14: enigmatic regulators of insulin action--and more? / Biochem J 2005,388(Pt 2):393-06.
    7. Manser J, Roonprapunt C, Margolis B: C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. / Dev Biol 1997,184(1):150-64. CrossRef
    8. Han DC, Guan JL: Association of focal adhesion kinase with Grb7 and its role in cell migration. / J Biol Chem 1999,274(34):24425-4430. CrossRef
    9. Han DC, Shen TL, Guan JL: Role of Grb7 targeting to focal contacts and its phosphorylation by focal adhesion kinase in regulation of cell migration. / J Biol Chem 2000,275(37):28911-8917. CrossRef
    10. Yokote K, Margolis B, Heldin CH, Claesson-Welsh L: Grb7 is a downstream signaling component of platelet-derived growth factor alpha- and beta-receptors. / J Biol Chem 1996,271(48):30942-0949. CrossRef
    11. Han DC, Shen TL, Miao H, Wang B, Guan JL: EphB1 associates with Grb7 and regulates cell migration. / J Biol Chem 2002,277(47):45655-5661. CrossRef
    12. Fiddes RJ, Campbell DH, Janes PW, Sivertsen SP, Sasaki H, Wallasch C, Daly RJ: Analysis of Grb7 recruitment by heregulin-activated erbB receptors reveals a novel target selectivity for erbB3. / J Biol Chem 1998,273(13):7717-724. CrossRef
    13. Stein D, Wu J, Fuqua SA, Roonprapunt C, Yajnik V, D'Eustachio P, Moskow JJ, Buchberg AM, Osborne CK, Margolis B: The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. / Embo J 1994,13(6):1331-340.
    14. Feldner JC, Brandt BH: Cancer cell motility--on the road from c-erbB-2 receptor steered signaling to actin reorganization. / Exp Cell Res 2002,272(2):93-08. CrossRef
    15. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC: The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. / Nat Rev Cancer 2005,5(7):505-15. CrossRef
    16. Pero SC, Daly RJ, Krag DN: Grb7-based molecular therapeutics in cancer. / Expert Rev Mol Med 2003, 2003:1-1.
    17. Tanaka S, Mori M, Akiyoshi T, Tanaka Y, Mafune K, Wands JR, Sugimachi K: Coexpression of Grb7 with epidermal growth factor receptor or Her2/erbB2 in human advanced esophageal carcinoma. / Cancer Res 1997,57(1):28-1.
    18. Kishi T, Sasaki H, Akiyama N, Ishizuka T, Sakamoto H, Aizawa S, Sugimura T, Terada M: Molecular cloning of human GRB-7 co-amplified with CAB1 and c-ERBB-2 in primary gastric cancer. / Biochem Biophys Res Commun 1997,232(1):5-. CrossRef
    19. Pero SC, Shukla GS, Cookson MM, Flemer S Jr., Krag DN: Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells. / Br J Cancer 2007,96(10):1520-525. CrossRef
    20. Tanaka S, Pero SC, Taguchi K, Shimada M, Mori M, Krag DN, Arii S: Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis. / J Natl Cancer Inst 2006,98(7):491-98. CrossRef
    21. Shen TL, Guan JL: Grb7 in intracellular signaling and its role in cell regulation. / Front Biosci 2004, 9:192-00. CrossRef
    22. Han DC, Shen TL, Guan JL: The Grb7 family proteins: structure, interactions with other signaling molecules and potential cellular functions. / Oncogene 2001,20(44):6315-321. CrossRef
    23. Stein EG, Gustafson TA, Hubbard SR: The BPS domain of Grb10 inhibits the catalytic activity of the insulin and IGF1 receptors. / FEBS Lett 2001,493(2-):106-11. CrossRef
    24. Bereziat V, Kasus-Jacobi A, Perdereau D, Cariou B, Girard J, Burnol AF: Inhibition of insulin receptor catalytic activity by the molecular adapter Grb14. / J Biol Chem 2002,277(7):4845-852. CrossRef
    25. Waksman G, Kominos D, Robertson SC, Pant N, Baltimore D, Birge RB, Cowburn D, Hanafusa H, Mayer BJ, Overduin M, / et al.: Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. / Nature 1992,358(6388):646-53. CrossRef
    26. Bradshaw JM, Waksman G: Molecular recognition by SH2 domains. / Adv Protein Chem 2002, 61:161-10. CrossRef
    27. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, / et al.: SH2 domains recognize specific phosphopeptide sequences. / Cell 1993,72(5):767-78. CrossRef
    28. Pero SC, Oligino L, Daly RJ, Soden AL, Liu C, Roller PP, Li P, Krag DN: Identification of novel non-phosphorylated ligands, which bind selectively to the SH2 domain of Grb7. / J Biol Chem 2002,277(14):11918-1926. CrossRef
    29. Ivancic M, Daly RJ, Lyons BA: Solution structure of the human Grb7-SH2 domain/erbB2 peptide complex and structural basis for Grb7 binding to ErbB2. / J Biomol NMR 2003,27(3):205-19. CrossRef
    30. Reilly JF, Mickey G, Maher PA: Association of fibroblast growth factor receptor 1 with the adaptor protein Grb14. Characterization of a new receptor binding partner. / J Biol Chem 2000,275(11):7771-778. CrossRef
    31. Jones N, Master Z, Jones J, Bouchard D, Gunji Y, Sasaki H, Daly R, Alitalo K, Dumont DJ: Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. / J Biol Chem 1999,274(43):30896-0905. CrossRef
    32. Frantz JD, Giorgetti-Peraldi S, Ottinger EA, Shoelson SE: Human GRB-IRbeta/GRB10. Splice variants of an insulin and growth factor receptor-binding protein with PH and SH2 domains. / J Biol Chem 1997,272(5):2659-667. CrossRef
    33. Hansen H, Svensson U, Zhu J, Laviola L, Giorgino F, Wolf G, Smith RJ, Riedel H: Interaction between the Grb10 SH2 domain and the insulin receptor carboxyl terminus. / J Biol Chem 1996,271(15):8882-886. CrossRef
    34. Stein E, Cerretti DP, Daniel TO: Ligand activation of ELK receptor tyrosine kinase promotes its association with Grb10 and Grb2 in vascular endothelial cells. / J Biol Chem 1996,271(38):23588-3593. CrossRef
    35. Wang J, Dai H, Yousaf N, Moussaif M, Deng Y, Boufelliga A, Swamy OR, Leone ME, Riedel H: Grb10, a positive, stimulatory signaling adapter in platelet-derived growth factor BB-, insulin-like growth factor I-, and insulin-mediated mitogenesis. / Mol Cell Biol 1999,19(9):6217-228.
    36. Stein EG, Ghirlando R, Hubbard SR: Structural basis for dimerization of the Grb10 Src homology 2 domain. Implications for ligand specificity. / J Biol Chem 2003,278(15):13257-3264. CrossRef
    37. Depetris RS, Hu J, Gimpelevich I, Holt LJ, Daly RJ, Hubbard SR: Structural basis for inhibition of the insulin receptor by the adaptor protein Grb14. / Mol Cell 2005,20(2):325-33. CrossRef
    38. Porter CJ, Wilce MC, Mackay JP, Leedman P, Wilce JA: Grb7-SH2 domain dimerisation is affected by a single point mutation. / Eur Biophys J 2005,34(5):454-60. CrossRef
    39. Ivancic M, Spuches AM, Guth EC, Daugherty MA, Wilcox DE, Lyons BA: Backbone nuclear relaxation characteristics and calorimetric investigation of the human Grb7-SH2/erbB2 peptide complex. / Protein Sci 2005,14(6):1556-569. CrossRef
    40. Pawson T, Gish GD, Nash P: The SH2 domain: a prototype for protein interaction modules. In / Modular Protein Domains. Edited by: Cesareni G, Gimona M, Sudol M, Yaffe M. Weinheim , WILEY-VCH; 2005:5-6.
    41. Eck MJ, Shoelson SE, Harrison SC: Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. / Nature 1993,362(6415):87-1. CrossRef
    42. Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J: Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. / Cell 1993,72(5):779-90. CrossRef
    43. Mikol V, Baumann G, Zurini MG, Hommel U: Crystal structure of the SH2 domain from the adaptor protein SHC: a model for peptide binding based on X-ray and NMR data. / J Mol Biol 1995,254(1):86-5. CrossRef
    44. Zhou MM, Meadows RP, Logan TM, Yoon HS, Wade WS, Ravichandran KS, Burakoff SJ, Fesik SW: Solution structure of the Shc SH2 domain complexed with a tyrosine-phosphorylated peptide from the T-cell receptor. / Proc Natl Acad Sci U S A 1995,92(17):7784-788. CrossRef
    45. Weber T, Schaffhausen B, Liu Y, Gunther UL: NMR structure of the N-SH2 of the p85 subunit of phosphoinositide 3-kinase complexed to a doubly phosphorylated peptide reveals a second phosphotyrosine binding site. / Biochemistry 2000,39(51):15860-5869. CrossRef
    46. Rahuel J, Gay B, Erdmann D, Strauss A, Garcia-Echeverria C, Furet P, Caravatti G, Fretz H, Schoepfer J, Grutter MG: Structural basis for specificity of Grb2-SH2 revealed by a novel ligand binding mode. / Nat Struct Biol 1996,3(7):586-89. CrossRef
    47. Cho S, Velikovsky CA, Swaminathan CP, Houtman JC, Samelson LE, Mariuzza RA: Structural basis for differential recognition of tyrosine-phosphorylated sites in the linker for activation of T cells (LAT) by the adaptor Gads. / Embo J 2004,23(7):1441-451. CrossRef
    48. Johnson ML, Correia JJ, Yphantis DA, Halvorson HR: Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. / Biophys J 1981, 36:575-88. CrossRef
    49. Yphantis DA: Equilibrium Ultracentrifugation of Dilute Solutions. / Biochemistry 1964, 3:297-17. CrossRef
    50. Brescia PJ, Ivancic M, Lyons BA: Assignment of backbone 1H, 13C, and 15N resonances of human Grb7-SH2 domain in complex with a phosphorylated peptide ligand. / J Biomol NMR 2002,23(1):77-8. CrossRef
    51. Porter CJ, Wilce JA: NMR analysis of G7-8NATE, a nonphosphorylated cyclic peptide inhibitor of the Grb7 adapter protein. / Biopolymers 2007,88(2):174-81. CrossRef
    52. Nioche P, Liu WQ, Broutin I, Charbonnier F, Latreille MT, Vidal M, Roques B, Garbay C, Ducruix A: Crystal structures of the SH2 domain of Grb2: highlight on the binding of a new high-affinity inhibitor. / J Mol Biol 2002,315(5):1167-177. CrossRef
    53. Holt LJ, Daly RJ: Adapter protein connections: the MRL and Grb7 protein families. / Growth Factors 2005,23(3):193-01. CrossRef
    54. Daly RJ, Sanderson GM, Janes PW, Sutherland RL: Cloning and characterization of GRB14, a novel member of the GRB7 gene family. / J Biol Chem 1996,271(21):12502-2510. CrossRef
    55. Janes PW, Lackmann M, Church WB, Sanderson GM, Sutherland RL, Daly RJ: Structural determinants of the interaction between the erbB2 receptor and the Src homology 2 domain of Grb7. / J Biol Chem 1997,272(13):8490-497. CrossRef
    56. Ettmayer P, France D, Gounarides J, Jarosinski M, Martin MS, Rondeau JM, Sabio M, Topiol S, Weidmann B, Zurini M, Bair KW: Structural and conformational requirements for high-affinity binding to the SH2 domain of Grb2(1). / J Med Chem 1999,42(6):971-80. CrossRef
    57. McNemar C, Snow ME, Windsor WT, Prongay A, Mui P, Zhang R, Durkin J, Le HV, Weber PC: Thermodynamic and structural analysis of phosphotyrosine polypeptide binding to Grb2-SH2. / Biochemistry 1997,36(33):10006-0014. CrossRef
    58. Ladbury JE, Hensmann M, Panayotou G, Campbell ID: Alternative modes of tyrosyl phosphopeptide binding to a Src family SH2 domain: implications for regulation of tyrosine kinase activity. / Biochemistry 1996,35(34):11062-1069. CrossRef
    59. Cai M, Huang Y, Sakaguchi K, Clore GM, Gronenborn AM, Craigie R: An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. / J Biomol NMR 1998,11(1):97-02. CrossRef
    60. Gill SC, von Hippel PH: Calculation of protein extinction coefficients from amino acid sequence data. / Anal Biochem 1989,182(2):319-26. CrossRef
    61. Rink H: Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methylester resin. / Tetrahedron Lett 1987, 28:3787-790. CrossRef
    62. Lung FDT, King CR, Roller PP: Development of non-phosphorylated cyclic thioether peptide binding to the Grb2-SH2 domain. / Letters in Peptide Science 1999, 6:45-9.
    63. Otwinowski Z, Minor W: Processing of X-Ray Diffraction Data Collected in Oscillation Mode. / Methods Enzymol 1997, 276:307-26. CrossRef
    64. French GS, Wilson KS: On the treatment of negative intensity observations. / Acta Crystallogr A 1978, 34:517 -5525. CrossRef
    65. Potterton E, Briggs P, Turkenburg M, Dodson E: A graphical user interface to the CCP4 program suite. / Acta Crystallogr D Biol Crystallogr 2003,59(7):1131-137. CrossRef
    66. CCP4: The CCP4 suite: programs for protein crystallography. / Acta Crystallogr D Biol Crystallogr 1994, 50:760-63. CrossRef
    67. Vagin A, Teplyakov A: MOLREP: an automated program for molecular replacement. / J Appl Cryst 1997, 30:1022-025. CrossRef
    68. Jones TA, Zou JY, Cowan SW, Kjeldgaard M: Improved methods for building protein models in electron density maps and the location of errors in these models. / Acta Crystallogr A 1991, 47 ( Pt 2):110-19. CrossRef
    69. Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum-likelihood method. / Acta Crystallogr D Biol Crystallogr 1997,53(Pt 3):240-55. CrossRef
    70. Perrakis A, Sixma TK, Wilson KS, S. LV: wARP: improvement and extension of crystallographic phases by weighted averaging of multiple refined dummy atomic models. / Acta Cryst D 1997, 448-55.
    71. Hooft RWW, Vriend G, Sander C, Abola EE: Errors in protein structures. / Nature 1996, 381,:272. CrossRef
    72. Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK: a program to check the stereochemical quality of protein structures. / J Appl Cryst 1993, 26:283-91. CrossRef
    73. Lee B, Richards FM: The interpretation of protein structures: estimation of static accessibility. / J Mol Biol 1971,55(3):379-00. CrossRef
    74. Hayes DB, Laue T, Philo J: / Sedimentation Interpretation Program, Version 1.08. Durham, NH , University of New Hampshire; 2003.
    75. Bax A, Ikura M, Kay LE, Torchia DA, Tschudin R: Comparison of different modes of two-dimensional reverse correlation NMR for the study of proteins. / J Magn Reson 1990, 86:304-18.
    76. Norwood TJ, Boyd J, Heritage JE, Soffe N, Campbell ID: Comparison of techniques for 1H-detected heteronuclear 1H-5N spectroscopy. / J Magn Reson 1990, 87:488-01.
    77. Piotto M, Saudek V, Sklenar V: Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. / J Biomol NMR 1992, 2:661-65. CrossRef
    78. Shaka AJ, Barker PB, Freeman R: Computer-optimised decoupling scheme for wideband applications and low-level operation. / J Magn Reson 1985, 64:547-52.
    79. Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten. K: NAMD2: Greater scalability for parallel molecular dynamics. / Journal of Computational Physics 1999, 283:283-12. CrossRef
    80. Potterton L, McNicholas S, Krissinel E, Gruber J, Cowtan K, Emsley P, Murshudov GN, Cohen S, Perrakis A, Noble M: Developments in the CCP4 molecular-graphics project. / Acta Crystallographica Section D-Biological Crystallography 2004,60(Pt 12 Pt 1):2288-294. CrossRef
  • 作者单位:Corrine J Porter (1)
    Jacqueline M Matthews (2)
    Joel P Mackay (2)
    Sharon E Pursglove (2)
    Jason W Schmidberger (1)
    Peter J Leedman (3)
    Stephanie C Pero (4)
    David N Krag (4)
    Matthew CJ Wilce (5)
    Jacqueline A Wilce (5)

    1. School of Biomedical and Chemical Sciences, University of Western Australia, WA, 6009, Australia
    2. Department of Biochemistry and Microbiology, University of Sydney, NSW, 2006, Australia
    3. Western Australian Institute of Medical Research, WA, 6000, Australia
    4. Department of Surgery and Vermont Cancer Center, University of Vermont, Burlington, VT, USA
    5. Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia
  • ISSN:1472-6807
文摘
Background Human growth factor receptor bound protein 7 (Grb7) is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK) that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE) has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines. Results As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 ? resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding. Conclusion Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of cancer cell migration and invasion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700