Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant
详细信息    查看全文
  • 作者:Vinayak S. Adki (1)
    Jyoti P. Jadhav (1) (2)
    Vishwas A. Bapat (1)
  • 关键词:Bioconcentration ; Hexavalant chromium ; Nopalea cochenillifera ; Tolerance ; Translocation ; Hyperaccumulator
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:20
  • 期:2
  • 页码:1173-1180
  • 全文大小:372KB
  • 参考文献:1. Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of / Allium cepa L. Ecotoxicol Environ Saf 70:300-10 CrossRef
    2. Agarwal A, Kumar V, Pandey BD (2006) Remediation options for the treatment of electroplating and leather tanning effluent containing chromium—a review. Miner Process Extract Metall Rev 27:99-30 CrossRef
    3. Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG (2003) Uptake and reduction of Cr(VI) to Cr(III) by Mesquite ( / Prosopis spp.): chromate–plant interaction in hydroponics and solid media studied using XAS. Environ Sci Technol 37:1859-864 CrossRef
    4. Brasil JN, Jereissati ES, Santos MRA, Campos FAP (2005) In vitro micropropagation of / Nopalea cochenillifera (Cactaceae). J Appl Bot Food Qual 79:160-62
    5. Brunetti G, Farrag K, Rovira PS, Nigro F, Senesi N (2011) Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by / Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma 160:517-23 CrossRef
    6. Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carter EJ (2010) / Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Biores Technol 101:5862-867 CrossRef
    7. Clabeaux BL, Navarro DAG, Aga DS, Bisson MA (2011) Cd tolerance and accumulation in the aquatic macrophyte, / Chara australis: potential use for charophytes in phytoremediation. Environ Sci Technol 45:5332-338 CrossRef
    8. De la Rosa G, Peralta-Videa JR, Cruz-Jiminez G, Duarte-Gardea M, Martinez A, Cano-Aguilera I, Sharma NC, Sahi SV, Gardea-Torresdey JL (2007) The role of EDTA on lead uptake and translocation by tumbleweed ( / Salsola kali L.). Environ Toxicol Chem 26:1033-039 CrossRef
    9. Desai C, Jain K, Madamwar D (2008) Hexavalent chromate reductase activity in cytosolic fractions of / Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochem 43:713-21 CrossRef
    10. Dong J, Wu F, Huang R, Zang G (2007) A chromium-tolerant plant growing in Cr-contaminated land. Int J Phytoremediat 9:167-79 CrossRef
    11. Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60-6 CrossRef
    12. Figueroa JAL, Afton S, Wrobel K, Wrobelac K, Caruso JA (2007) Analysis of phytochelatins in nopal ( / Opuntia ficus): a metallomics approach in the soil–plant system. J Anal At Spectrom 22:897-04 CrossRef
    13. Gardea-Torresdey JL, Peralta-Videa JR, Montes M, de la Rosa G, Corral-Diaz B (2004) Bioaccumulation of cadmium, chromium and copper by / Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Biores Technol 92:229-35 CrossRef
    14. Golan-Goldhirsh A, Barazani O, Nepovim A, Soudek P, Smrcek S, Dufkova L, Krenkova S, Yrjala K, Schr?der P, Vanek T (2004) Plant response to heavy metals and organic pollutants in cell culture and at whole plant level. J Soils Sediments 4:130-40 CrossRef
    15. Haque N, Peralta-Videa JR, Jones GL, Gill TE, Gardea-Torresdeya JL (2008) Screening the phytoremediation potential of desert broom ( / Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environ Pollut 153:362-68 CrossRef
    16. Haque N, Peralta-Videa JR, Gardea-Torresdey JL (2009) Differential effect of metals/metalloids on the growth and element uptake of mesquite plants obtained from plants grown at a copper mine tailing and commercial seeds. Biores Technol 100:6177-182 CrossRef
    17. Liu J, Duan C, Zhang X, Zhu Y, Lu X (2011) Potential of / Leersia hexandra Swartz for phytoextraction of Cr from soil. J Hazard Mater 188:85-1 CrossRef
    18. López ML, Peralta-Videa JR, Benitez T, Duarte-Gardea M, Gardea-Torresdey JL (2007) Effects of lead, EDTA, and IAA on nutrient uptake by alfalfa plants. J Plant Nutr 30:1247-261 CrossRef
    19. Mongkhonsin B, Nakbanpote W, Nakai I, Hokura A, Jearanaikoon N (2011) Distribution and speciation of chromium accumulated in / Gynura pseudochina (L.) DC. Env Exp Bot 74:56-4 CrossRef
    20. Montes-Holguin MO, Peralta-Videa JR, Meitzner G, Martinez-Martinez A, De la Rosa G, Castillo-Michel HA, Gardea-Torresday JL (2006) Biochemical and spectroscopic studies of the response of / Convolvulus arvensis L. to Cr(III) and Cr(VI) stress. Environ Toxicol Chem 25:220-26 CrossRef
    21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473-97 CrossRef
    22. Panda SK, Choudhary S (2005) Chromium stress in plants. Brazil J Plant Physiol 17:95-02
    23. Panda SK, Patra HK (2000) Does Cr(III) produces oxidative damage in excised wheat leaves. J Plant Biol 27(2):105-10
    24. Panda SK, Chaudhury I, Khan MH (2003) Heavy metals induce lipid peroxidation and affects antioxidants in wheat leaves. Biol Plant 46:289-94 CrossRef
    25. Pandey S, Singh MP, Singh RP (2010) Effect of heavy metals (Pb & Cr) on growth and chlorophyll content of / Dhatura metel L. Ind J Sci Res 1:51-4
    26. Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in / Pisum sativum. Chem Res Toxicol 24:1040-047 CrossRef
    27. Shams KM, Tichy G, Fische A, Sager M, Peer T, Bashar A, Filip K (2010) Aspects of phytoremediation for chromium contaminated sites using common plants / Urtica dioica, / Brassica napus and / Zea mays. Plant Soil 328:175-89 CrossRef
    28. Shukla OP, Juwarkar AA, Singh SK, Khan S, Rai UN (2011) Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge. Waste Manage 31:115-23 CrossRef
    29. Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of / Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58:595-04 CrossRef
    30. Sung M, Lee CY, Lee SZ (2011) Combined mild soil washing and compost-assisted phytoremediation in treatment of silt loams contaminated with copper, nickel, and chromium. J Hazard Mater 190:744-54 CrossRef
    31. Wani R, Kodam KM, Gawai KR, Dhakephalkar PK (2007) Chromate reduction by / Burkholderia cepacia MCMB-821, isolated from the pristine habitat of alkaline water crater lake. Appl Microbiol Biotechnol 75:627-32 CrossRef
    32. Yu X-Z, Hu J-D (2007) Accumulation and distribution of trivalent chromium and effects on hybrid willow ( / Salix matsudana Koidz x alba L.) metabolism. Arch Environ Contam Toxicol 52:503-11 CrossRef
    33. Yu XZ, Gu JD, Xing LQ (2008) Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows. Ecotoxicology 17:747-55 CrossRef
    34. Zhang XH, Luo YP, Huang HT, Liu J, Chen J (2005) Electroplating factory heavy metal pollution in soil and characteristics of plant accumulation. J Guilin Univ Technol 25:289-92
    35. Zhao Y, Jose R, Peralta-Videa, Lopez-Moreno ML, Saupe GB, Gardea-Torresdey JL (2011) Use of plasma-based spectroscopy and infrared microspectroscopy techniques to determine the uptake and effects of chromium(III) and chromium(VI) on / Parkinsonia aculeate. Int J Phytorem 13:17-3 CrossRef
  • 作者单位:Vinayak S. Adki (1)
    Jyoti P. Jadhav (1) (2)
    Vishwas A. Bapat (1)

    1. Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, 416004, India
    2. Department of Biochemistry, Shivaji University, Kolhapur, 416004, India
  • ISSN:1614-7499
文摘
Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant’s hyperaccumulation capacity. Plants showed tolerance up to 100?μM K2Cr2O7 without any significant changes in root growth after 16?days treatment; whereas, chlorophyll content in plants treated with 1 and 10?μM K2Cr2O7 were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p-lt;-.01) with increasing concentration of chromium. Exposures of N. cochenillifera to lower concentrations of K2Cr2O7 (?0?μM) induced catalase (CAT) and superoxide dismutase (SOD) significantly (p-lt;-.001) but higher concentrations of K2Cr2O7 (>100?μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396?±-,722.672?mg?Cr?Kg? dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714?±-2.324?mg?Cr?Kg??DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700