Oligo-3-hydroxybutyrate functionalised pyrroles for preparation of biodegradable conductive polymers
详细信息    查看全文
  • 作者:A. Domagala (1)
    M. Maksymiak (1)
    H. Janeczek (1)
    M. Musiol (1)
    R. Turczyn (2)
    P. Ledwon (2)
    B. Kaczmarczyk (1)
    P. Kurcok (1)
    G. Adamus (1)
    M. Kowalczuk (1)
    M. Lapkowski (1) (2)
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:49
  • 期:14
  • 页码:5227-5236
  • 全文大小:
  • 参考文献:1. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876-21. doi:10.1016/j.progpolymsci.2007.05.012 CrossRef
    2. Li X, Kolega J (2002) Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells. J Vasc Res 39:391-04. doi:10.1159/000064517 CrossRef
    3. Huang L, Hu J, Lang L, Wang X et al (2007) Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials 28:1741-751. doi:10.1016/j.biomaterials.2006.12.007 CrossRef
    4. Ozawa H, Abe E, Shibasaki Y, Fukuhara T, Suda T (1989) Electric fields stimulate DNA synthesis of mouse osteoblast-like cells (MC3T3-E1) by a mechanism involving calcium ions. J Cell Physiol 138:477-83. doi:10.1002/jcp.1041380306 CrossRef
    5. Wong JY, Langert R, Ingberi DE (1994) Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc Natl Acad Sci USA 91:3201-204. doi:10.1073/pnas.91.8.3201 CrossRef
    6. Goldman R, Pollack S (1996) Electric fields and proliferation in a chronic wound model. Bioelectromagnetics 17:450-57. doi:10.1002/(SICI)1521-186X(1996)17:6<450:AID-BEM4>3.0.CO;2-2 CrossRef
    7. Spadaro JA (1997) Mechanical and electrical interactions in bone remodeling. Bioelectromagnetics 18:193-02. doi:10.1002/(SICI)1521-186X(1997)18:3<193:AID-BEM1>3.0.CO;2-Y CrossRef
    8. Aaron RK, Ciombor DM (1993) Therapeutic effects of electromagnetic fields in the stimulation of connective tissue repair. J Cell Biochem 52:42-6. doi:10.1002/jcb.240520107 CrossRef
    9. Kotwal A, Schmidt CE (2001) Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22:1055-064. doi:10.1016/S0142-9612(00)00344-6 CrossRef
    10. Stauffer WR, Cui XT (2006) Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials 27:2405-413. doi:10.1016/j.biomaterials.2005.10.024 CrossRef
    11. Abdi MM, Kassim A, Mahmud HNME, Yunus WMM, Talib ZA, Sadrolhosseini AR (2009) Physical, optical, and electrical properties of a new conducting polymer. J Mater Sci 44:3682-686. doi:10.1007/s10853-009-3491-y CrossRef
    12. Garner B, Hodgson AJ, Wallace GG, Underwood PA (1999) Human endothelial cell attachment to and growth on polypyrrole-heparin is vitronectin dependent. J Mater Sci Mater Med 10:19-7. doi:10.1023/A:1008835925998 CrossRef
    13. Cen L, Neoh KG, Li Y, Kang ET (2004) Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer. Biomacromolecules 5:2238-246. doi:10.1021/bm040048v CrossRef
    14. Wang J, Jiang M (2000) Toward genolelectronics: nucleic acid doped conducting polymers. Langmuir 16:2269-274. doi:10.1021/la991122b CrossRef
    15. Gomez N, Schmidt CE (2007) Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res A 81:135-49. doi:10.1002/jbm.a.31047 CrossRef
    16. Tlili C, Jaffrezic-Renault NJ, Martelet C, Korri-Youssoufi H (2008) Direct electrochemical probing of DNA hybridization on oligonucleotide-functionalized polypyrrole. Mater Sci Eng, C 28:848-54. doi:10.1016/j.msec.2007.10.061 CrossRef
    17. Lee JW, Serna F, Nickels J, Schmidt CE (2006) Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules 7:1692-695. doi:10.1021/bm060220q CrossRef
    18. Mecerreyes D, Stevens R, Nguyen C, Pomposo JA, Bengoetxea M, Grande H (2002) Synthesis and characterization of polypyrrole-graft-poly(ε-caprolactone) copolymers: new electrically conductive nanocomposites. Synth Met 126:173-78. doi:10.1016/S0379-6779(01)00503-3 CrossRef
    19. Cen L, Neoh KG, Kang ET (2002) Surface functionalization of electrically conductive polypyrrole film with hyaluronic acid. Langmuir 18:8633-640. doi:10.1021/la025979b CrossRef
    20. Rivers TJ, Hudson TW, Schmidt CE (2002) Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv Funct Mater 12:33-7. doi:10.1002/1616-3028(20020101)12:1<33:AID-ADFM33>3.0.CO;2-E CrossRef
    21. Madhankumar A, Ramakrishna S, Sudhagar P, Kim H, Kang YS, Obot IB, Gasen ZMA (2014) An electrochemical, in vitro bioactivity, and quantum chemical approach to nanostructured copolymer coatings for ortopedic applications. J Mater Sci 49:4067-080. doi:10.1007/s10853-014-8094-6 CrossRef
    22. Shi G, Rouabhia M, Wang Z, Dao LH, Zhang Z (2004) A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials 25:2477-488. doi:10.1016/j.biomaterials.2003.09.032 CrossRef
    23. Wang X, Gu X, Yuan C, Chen S, Zhang P, Zhang T et al (2004) Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res 68A:411-22. doi:10.1002/jbm.a.20065 CrossRef
    24. Jedliński Z (1998) Novel electron-transfer reactions mediated by alkali metals complexed by macrocyclic ligand. Acc Chem Res 31:55-1. doi:10.1021/ar9702076 CrossRef
    25. Jedliński Z, Kurcok P, Adamus G, Juzwa M (2000) Biomimetic polyesters and their role in ion transport across cell membranes. Acta Biochim Pol 47:79-5
    26. Jedliński Z, Kurcok P, Lenz RW (1998) First facile synthesis of biomimetic poly-(R)-3-hydroxybutyrate via regioselective anionic polymerization of (S)-β-butyrolactone. Macromolecules 31:6718-720. doi:10.1021/ma980663pRES CrossRef
    27. Kurcok P, ?miga M, Jedliński Z (2002) β-Butyrolactone polymerization initiated with tetrabutylammonium carboxylates: a novel approach to biomimetic polyester synthesis. J Polym Sci Part A 40:2184-189. doi:10.1002/pola.10285 CrossRef
    28. Juzwa M, Rusin A, Zawidlak-W?grzyńska B, Krawczyk Z et al (2008) Oligo(3-hydroxybutanoate) conjugates with acetylsalicylic acid and their antitumour activity. Eur J Med Chem 43:1785-790. doi:10.1016/j.ejmech.2007.11.004 CrossRef
    29. Zawidlak-W?grzyńska B, Kawalec M, Bosek I, ?uczyk-Juzwa M et al (2010) Synthesis and antiproliferative properties of ibuprofen–oligo(3-hydroxybutyrate) conjugates. Eur J Med Chem 45:1833-842. doi:10.1016/j.ejmech.2010.01.020 CrossRef
    30. Jedliński Z, ?uczyk-Juzwa M, Zawidlak-W?grzyńska B, Kaczmarczyk B, Bosek I, Wanic A (2005) Pat PL 196 384 B1
    31. Jedliński Z, Kowalczuk M, Kurcok P (1986) Anionic ring-opening polymerization by alkali-metal solution. Macromol Chem Macromol Symp 3:277-93. doi:10.1002/masy.19860030121 CrossRef
    32. Prissanaroon W, Ruangchuay L, Sirivat A, Schwank J (2000) Electrical conductivity response of dodecylbenzene sulfonic acid-doped polypyrrole films to SO2–N2 mixtures. Synth Met 114:65-2. doi:10.1016/S0379-6779(00)00230-7 CrossRef
    33. Senel M, Nergiz C (2012) Novel amperometric glucose biosensor based on covalent immobilization of glucose oxidase on poly(pyrrole propylic acid)/Au nanocomposite. Curr Appl Phys 12:1118-124. doi:10.1016/j.cap.2012.02.004 CrossRef
    34. Kurcok P, Jedliński Z, Kowalczuk M (1993) Reactions of β-lactones with potassium alkoxides and their complexes with 18-crown-6 in aprotic solvents. J Org Chem 58:4219-220. doi:10.1021/jo00068a015 CrossRef
    35. Jedliński Z, Adamus G, Kowalczuk M, Schubert R, Szewczuk Z, Stefanowicz P (1998) Electrospray tandem mass spectrometry of poly(3-hydroxybutanoic acid) end groups analysis and fragmentation mechanism. Rapid Commun Mass Spectrom 12:357-60. doi:10.1002/(SICI)1097-0231(19980415)12:7<357:AID-RCM172>3.0.CO;2-C CrossRef
    36. Arkin AH, Hazer B, Adamus G, Kowalczuk M, Jedliński Z, Lenz RW (2001) Synthesis of poly(2-methyl-3-hydroxyoctanoate) via anionic polymerization of α-methyl-β-pentyl-β-propiolactone. Biomacromolecules 2:623-27. doi:10.1021/bm015528q CrossRef
    37. Adamus G, Kowalczuk M (2008) Anionic ring-opening polymerization of β-alkoxymethyl-substituted β-lactones. Biomacromolecules 9:696-03. doi:10.1021/bm701077v CrossRef
    38. Adamus G (2009) Molecular level structure of (R, S)-3-hydroxybutyrate/(R, S)-3-hydroxy-4-ethoxybutyrate copolyesters with dissimilar architecture. Macromolecules 42:4547-557. doi:10.1021/ma900349u CrossRef
    39. Maksymiak M, D?bowska R, Jelonek K, Kowalczuk M, Adamus G (2013) Structural characterization of biocompatible lipoic acid—oligo(3-hydroxybutyrate) conjugates by ESI -mass spectrometry. Rapid Commun Mass Spectrom 27:773-83. doi:10.1002/rcm.6509 CrossRef
    40. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca
    41. Vernitskaya TV, Efimov ON (1997) Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66:443-57. doi:10.1070/RC1997v066n05ABEH000261 CrossRef
    42. Kang HC, Geckeler KE (2000) Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: effect of the preparation technique and polymer additive. Polymer 41:6931-934. doi:10.1016/S0032-3861(00)00116-6 CrossRef
    43. Geckeler KE, Arsalani N (1997) Synthesis and properties of hydrophilic polymers, 6: water-soluble polypyrrole graft copolymers with electrical conductivity. Macromol Rapid Commun 18:503-08. doi:10.1002/marc.1997.030180608 CrossRef
    44. Zotti G (1998) Doping-level dependence of conductivity in polypyrroles and polythiophenes. Synth Met 97:267-72. doi:10.1016/S0379-6779(98)00144-1 CrossRef
    45. Zhang X, Wang S, Lu S, Su J, He T (2014) Influence of doping anions on structure and properties of electro-polymerized polypyrrole counter electrodes for use in dye-sensitized solar cells. J Power Sources 246:491-98. doi:10.1016/j.jpowsour.2013.07.098 CrossRef
  • 作者单位:A. Domagala (1)
    M. Maksymiak (1)
    H. Janeczek (1)
    M. Musiol (1)
    R. Turczyn (2)
    P. Ledwon (2)
    B. Kaczmarczyk (1)
    P. Kurcok (1)
    G. Adamus (1)
    M. Kowalczuk (1)
    M. Lapkowski (1) (2)

    1. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sk?odowskiej St, 41-819, Zabrze, Poland
    2. Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Marcina Strzody St, 44-100, Gliwice, Poland
  • ISSN:1573-4803
文摘
We report the synthesis and characterization of a novel polypyrrole material grafted with biodegradable oligo-3-hydroxybutyrate pendants. The polymer was prepared in a two-step process. Firstly, the potassium salt 1-2-carboxyethyl)pyrrole was reacted with β-butyrolactone affording N-substituted macromonomer. Secondly, the macromonomer was oxidatively polymerised with FeCl3 Lewis acid. The reaction was carried out in solvents of assorted polarity: dimethylsulphoxide, acetonitrile, dimethylformamide and water. Obtained polymers have been characterised comprehensively using a suite of spectral techniques. The material was found to combine the well-known merits of 3-hydroxybutyrate polymers with the electrical conductivity imparted by polypyrrole units.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700