Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease
详细信息    查看全文
  • 作者:Jeffrey B Carroll (1)
    Amber L Southwell (2)
    Rona K Graham (2)
    Jason P Lerch (3)
    Dagmar E Ehrnhoefer (2)
    Li-Ping Cao (2)
    Wei-Ning Zhang (2)
    Yu Deng (2)
    Nagat Bissada (2)
    R Mark Henkelman (3)
    Michael R Hayden (2)
  • 关键词:Huntington's Disease ; neurodegeneration ; caspase ; magnetic resonance imaging
  • 刊名:Molecular Neurodegeneration
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:6
  • 期:1
  • 全文大小:440KB
  • 参考文献:1. Walker F: Huntington's disease. / Lancet 2007,369(9557):218鈥?28. CrossRef
    2. The Huntington's Disease Collaborative Research Group: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. / Cell 1993,72(6):971鈥?83. CrossRef
    3. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP: Neuropathological classification of Huntington's disease. / J Neuropathol Exp Neurol 1985,44(6):559鈥?77. CrossRef
    4. Kumar S: Caspase function in programmed cell death. / Cell Death Differ 2007,14(1):32鈥?3. CrossRef
    5. Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G: No death without life: vital functions of apoptotic effectors. / Cell Death Differ 2008,15(7):1113鈥?123. CrossRef
    6. Hermel E, Gafni J, Propp SS, Leavitt BR, Wellington CL, Young JE, Hackam AS, Logvinova AV, Peel AL, Chen SF, / et al.: Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease. / Cell Death Differ 2004,11(4):424鈥?38. CrossRef
    7. Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK, Loubser O, van Raamsdonk J, Singaraja R, Yang YZ, / et al.: Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. / J Neurosci 2002,22(18):7862鈥?872.
    8. Wellington CL, Singaraja R, Ellerby L, Savill J, Roy S, Leavitt B, Cattaneo E, Hackam A, Sharp A, Thornberry N, / et al.: Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. / J Biol Chem 2000,275(26):19831鈥?9838. CrossRef
    9. Wellington CL, Ellerby LM, Hackam AS, Margolis RL, Trifiro MA, Singaraja R, McCutcheon K, Salvesen GS, Propp SS, Bromm M, / et al.: Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. / J Biol Chem 1998,273(15):9158鈥?167. CrossRef
    10. Weidemann A, Paliga K, D眉rrwang U, Reinhard FB, Schuckert O, Evin G, Masters CL: Proteolytic processing of the Alzheimer's disease amyloid precursor protein within its cytoplasmic domain by caspase-like proteases. / J Biol Chem 1999,274(9):5823鈥?829. CrossRef
    11. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M, Shearman MS, / et al.: Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation. / Cell 1999,97(3):395鈥?06. CrossRef
    12. LeBlanc A, Liu H, Goodyer C, Bergeron C, Hammond J: Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer's disease. / J Biol Chem 1999,274(33):23426鈥?3436. CrossRef
    13. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N, / et al.: Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. / Proc Natl Acad Sci USA 2003,100(17):10032鈥?0037. CrossRef
    14. Young JE, Gouw L, Propp S, Sopher BL, Taylor J, Lin A, Hermel E, Logvinova A, Chen SF, Chen S, / et al.: Proteolytic cleavage of ataxin-7 by caspase-7 modulates cellular toxicity and transcriptional dysregulation. / J Biol Chem 2007,282(41):30150鈥?0160. CrossRef
    15. Li H, Zhu H, Xu CJ, Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. / Cell 1998,94(4):491鈥?01. CrossRef
    16. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC: Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. / The EMBO Journal 1999,18(19):5242鈥?251. CrossRef
    17. Salvesen GS, Riedl SJ: Caspase mechanisms. / Adv Exp Med Biol 2008, 615:13鈥?3. CrossRef
    18. Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, / et al.: Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. / Cell 2006,125(6):1179鈥?191. CrossRef
    19. Pouladi MA, Graham RK, Karasinska JM, Xie Y, Santos RD, Peters茅n A, Hayden MR: Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. / Brain 2009,132(Pt 4):919鈥?32.
    20. Milnerwood AJ, Gladding CM, Pouladi MA, Kaufman AM, Hines RM, Boyd JD, Ko RWY, Vasuta OC, Graham RK, Hayden MR, / et al.: Early Increase in Extrasynaptic NMDA Receptor Signaling and Expression Contributes to Phenotype Onset in Huntington's Disease Mice. / Neuron 2010,65(2):178鈥?90. CrossRef
    21. Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV, Sitaraman S, Carlson E, Sagi SA, Chevallier N, Jin K, / et al.: Reversal of Alzheimer's-like pathology and behavior in human APP transgenic mice by mutation of Asp664. / J Biol Chem 1999,274(13):8730鈥?736. CrossRef
    22. Saganich MJ, Schroeder BE, Galvan V, Bredesen DE, Koo EH, Heinemann SF: Deficits in synaptic transmission and learning in amyloid precursor protein (APP) transgenic mice require C-terminal cleavage of APP. / J Neurosci 2006,26(52):13428鈥?3436. CrossRef
    23. Ellerby LM, Andrusiak RL, Wellington CL, Hackam AS, Propp SS, Wood JD, Sharp AH, Margolis RL, Ross CA, Salvesen GS, / et al.: Cleavage of atrophin-1 at caspase site aspartic acid 109 modulates cytotoxicity. / J Biol Chem 1999,274(13):8730鈥?736. CrossRef
    24. Troy CM, Rabacchi SA, Xu Z, Maroney AC, Connors TJ, Shelanski ML, Greene LA: beta-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. / J Neurochem 2001,77(1):157鈥?64. CrossRef
    25. Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, Shelanski ML: Caspase-2 mediates neuronal cell death induced by beta-amyloid. / J Neurosci 2000,20(4):1386鈥?392.
    26. Allen JW, Eldadah BA, Huang X, Knoblach SM, Faden AI: Multiple caspases are involved in beta-amyloid-induced neuronal apoptosis. / J Neurosci Res 2001,65(1):45鈥?3. CrossRef
    27. Wang L, Miura M, Bergeron L, Zhu H, Yuan J: Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. / Cell 1994,78(5):739鈥?50. CrossRef
    28. Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA: Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. / Genes Dev 1994,8(14):1613鈥?626. CrossRef
    29. Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P: Alice in caspase land. A phylogenetic analysis of caspases from worm to man. / Cell Death Differ 2002,9(4):358鈥?61. CrossRef
    30. Xue D, Shaham S, Horvitz HR: The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. / Genes Dev 1996,10(9):1073鈥?083. CrossRef
    31. Mancini M, Machamer CE, Roy S, Nicholson DW, Thornberry NA, Casciola-Rosen LA, Rosen A: Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. / J Cell Biol 2000,149(3):603鈥?12. CrossRef
    32. Rotter B, Kroviarski Y, Nicolas G, Dhermy D, Lecomte M-C: AlphaII-spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding. / Biochem J 2004, 378:(Pt 1):161鈥?68. CrossRef
    33. Panaretakis T, Laane E, Pokrovskaja K, Bj枚rklund A-C, Moustakas A, Zhivotovsky B, Heyman M, Shoshan MC, Grand茅r D: Doxorubicin requires the sequential activation of caspase-2, protein kinase Cdelta, and c-Jun NH2-terminal kinase to induce apoptosis. / Mol Biol Cell 2005,16(8):3821鈥?831. CrossRef
    34. Gao Z, Shao Y, Jiang X: Essential roles of the Bcl-2 family of proteins in caspase-2-induced apoptosis. / J Biol Chem 2005,280(46):38271鈥?8275. CrossRef
    35. McStay GP, Salvesen GS, Green DR: Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. / Cell Death Differ 2008,15(2):322鈥?31. CrossRef
    36. van Raamsdonk JM, Murphy Z, Slow EJ, Leavitt BR, Hayden MR: Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. / Hum Mol Genet 2005,14(24):3823鈥?835. CrossRef
    37. Van Raamsdonk JM, Pearson J, Slow EJ, Hossain SM, Leavitt BR, Hayden MR: Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington's disease. / J Neurosci 2005,25(16):4169鈥?180. CrossRef
    38. Slow EJ, van Raamsdonk J, Rogers DA, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang Y, / et al.: Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. / Hum Mol Genet 2003,12(13):1555鈥?567. CrossRef
    39. O'Reilly LA, Ekert P, Harvey N, Marsden V, Cullen L, Vaux DL, Hacker G, Magnusson C, Pakusch M, Cecconi F, / et al.: Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. / Cell Death Differ 2002,9(8):832鈥?41. CrossRef
    40. Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston LA, Hartog C, Goldstein DR, Thu D, / et al.: Regional and cellular gene expression changes in human Huntington's disease brain. / Hum Mol Genet 2006,15(6):965鈥?77. CrossRef
    41. Valenza M, Rigamonti D, Goffredo D, Zuccato C, Fenu S, Jamot L, Strand A, Tarditi A, Woodman B, Racchi M, / et al.: Dysfunction of the cholesterol biosynthetic pathway in Huntington's disease. / J Neurosci 2005,25(43):9932鈥?939. CrossRef
    42. Pouladi MA, Graham RK, Karasinska JM, Xie Y, Santos RD, Peters茅n A, Hayden MR: Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. / Brain: a journal of neurology 2009,132(Pt 4):919鈥?32.
    43. Southwell AL, Ko J, Patterson PH: Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington's disease. / J Neurosci 2009,29(43):13589鈥?3602. CrossRef
    44. Aron AR, Watkins L, Sahakian BJ, Monsell S, Barker RA, Robbins TW: Task-set switching deficits in early-stage Huntington's disease: implications for basal ganglia function. / J Cogn Neurosci 2003,15(5):629鈥?42. CrossRef
    45. Lawrence AD, Sahakian BJ, Hodges JR, Rosser AE, Lange KW, Robbins TW: Executive and mnemonic functions in early Huntington's disease. / Brain 1996,119(Pt 5):1633鈥?645. CrossRef
    46. Lalonde R, Qian S: Exploratory activity, motor coordination, and spatial learning in Mchr1 knockout mice. / Behav Brain Res 2007,178(2):293鈥?04. CrossRef
    47. Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR: Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington's disease. / J Neurol Neurosurg Psychiatr 1995,58(2):192鈥?00. CrossRef
    48. Southwell AL, Ko J, Patterson PH: Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington's disease. / J Neurosci 2009,29(43):13589鈥?3602. CrossRef
    49. Van Raamsdonk JM, Murphy Z, Selva DM, Hamidizadeh R, Pearson J, Peters茅n A, Bj枚rkqvist M, Muir C, Mackenzie IR, Hammond GL, / et al.: Testicular degeneration in Huntington disease. / Neurobiol Dis 2007,26(3):512鈥?20. CrossRef
    50. Carroll JB, Lerch JP, Franciosi S, Spreeuw A, Bissada N, Henkelman RM, Hayden MR: Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington Disease. / Neurobiol Dis 2011.
    51. Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM: High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. / NeuroImage 2008,42(1):60鈥?9. CrossRef
    52. Lerch JP, Carroll JB, Dorr A, Spring S, Evans AC, Hayden MR, Sled JG, Henkelman RM: Cortical thickness measured from MRI in the YAC128 mouse model of Huntington's disease. / NeuroImage 2008,41(2):243鈥?51. CrossRef
    53. Lerch JP, Carroll JB, Spring S, Bertram LN, Schwab C, Hayden MR, Henkelman RM: Automated deformation analysis in the YAC128 Huntington disease mouse model. / NeuroImage 2008,39(1):32鈥?9. CrossRef
    54. Lerch JP, Carroll JB, Spring S, Bertram LN, Schwab C, Hayden MR, Mark Henkelman R: Automated deformation analysis in the YAC128 Huntington disease mouse model. / Neuroimage 2008., 39:
    55. Paulsen JS, Magnotta VA, Mikos AE, Paulson HL, Penziner E, Andreasen NC, Nopoulos PC: Brain structure in preclinical Huntington's disease. / Biol Psychiatry 2006,59(1):57鈥?3. ych.2005.06.003">CrossRef
    56. Sprengelmeyer R, Lange H, H枚mberg V: The pattern of attentional deficits in Huntington's disease. / Brain 1995,118(Pt 1):145鈥?52. CrossRef
    57. Lawrence AD, Hodges JR, Rosser AE, Kershaw A, ffrench-Constant C, Rubinsztein DC, Robbins TW, Sahakian BJ: Evidence for specific cognitive deficits in preclinical Huntington's disease. / Brain 1998,121(Pt 7):1329鈥?341. CrossRef
    58. Van Raamsdonk JM, Pearson J, Bailey CDC, Rogers DA, Johnson GVW, Hayden MR, Leavitt BR: Cystamine treatment is neuroprotective in the YAC128 mouse model of Huntington disease. / J Neurochem 2005,95(1):210鈥?20. CrossRef
    59. Van Raamsdonk JM, Pearson J, Rogers DA, Lu G, Barakauskas VE, Barr AM, Honer WG, Hayden MR, Leavitt BR: Ethyl-EPA treatment improves motor dysfunction, but not neurodegeneration in the YAC128 mouse model of Huntington disease. / Exp Neurol 2005,196(2):266鈥?72. CrossRef
    60. Group HS: Tetrabenazine as antichorea therapy in Huntington disease: A randomized controlled trial. / Neurology 2006,66(3):366鈥?72. CrossRef
    61. Henkelman RM, Baghdadi L, Sled JG: Presentation of 3D isotropic imaging data for optimal viewing. / Magn Reson Med 2006,56(6):1371鈥?374. CrossRef
    62. Dorr AE, Lerch JP, Kabani N, Henkelman RM: High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. / Neuroimage 2008,42(1):60鈥?9. CrossRef
    63. Collins D, Holmes C, Peters T, Evans A: Automatic 3-D model-based neuroanatomical segmentation. / Human Brain Mapping 1995,3(3):190鈥?08. CrossRef
    64. Lerch J, Yiu A, Bohbot V, Henkelman R, Josselyn S, Sled J: Morris water maze training induces changes in brain shape detectable by MRI. / Society for Neuroscience 2007, 104530.
    65. Team RDC: R: A Language and Environment for Statistical Computing. 2009.
    66. Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston LA, Hartog C, Goldstein DR, Thu D, / et al.: Regional and cellular gene expression changes in human Huntington's disease brain. / Hum Mol Genet 2006,15(6):965鈥?77. CrossRef
  • 作者单位:Jeffrey B Carroll (1)
    Amber L Southwell (2)
    Rona K Graham (2)
    Jason P Lerch (3)
    Dagmar E Ehrnhoefer (2)
    Li-Ping Cao (2)
    Wei-Ning Zhang (2)
    Yu Deng (2)
    Nagat Bissada (2)
    R Mark Henkelman (3)
    Michael R Hayden (2)

    1. Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Program in Neuroscience, University of British Columbia, Vancouver, V5Z 4H4, Canada
    2. Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
    3. The Mouse Imaging Centre, The Hospital for Sick Children, Toronto, M5T 3H7, Canada
文摘
Background Huntington Disease (HD) is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2) activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/-) to examine the role played by casp2 in the progression of HD. This 'substrate agnostic' approach allows us to query the effect of casp2 on HD progression without pre-defining proteolytic substrates of interest. Results YAC128 HD model mice lacking casp2 show protection from well-validated motor and cognitive features of HD, including performance on rotarod, swimming T-maze, pre-pulse inhibition, spontaneous alternation and locomotor tasks. However, the specific pathological features of the YAC128 mice including striatal volume loss and testicular degeneration are unaltered in mice lacking casp2. The application of high-resolution magnetic resonance imaging (MRI) techniques validates specific neuropathology in the YAC128 mice that is not altered by ablation of casp2. Conclusions The rescue of behavioral phenotypes in the absence of pathological improvement suggests that different pathways may be operative in the dysfunction of neural circuitry in HD leading to behavioral changes compared to the processes leading to cell death and volume loss. Inhibition of caspase-2 activity may be associated with symptomatic improvement in HD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700