Genomics and relative expression analysis identifies key genes associated with high female to male flower ratio in Jatropha curcas L.
详细信息    查看全文
  • 作者:Manali Gangwar ; Hemant Sood ; Rajinder Singh Chauhan
  • 关键词:cis ; regulatory elements ; Floral transition ; Female flowering ; Jatropha curcas ; Seed yield
  • 刊名:Molecular Biology Reports
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:43
  • 期:4
  • 页码:305-322
  • 全文大小:1,818 KB
  • 参考文献:1.Akbar E, Yaakob Z, Kamarudin S, Ismail M (2009) Characteristics and Composition of Jatropha curcas oil seed from Malaysia and its potential as Biodiesel Feedstock. Eur J Sci Res 29:396–403
    2.Luo C-W, Li K, Chen Y, Y-y S (2007) Floral display and breeding system of Jatropha curcas L. For Stud China 9:114–119. doi:10.​1007/​s11632-007-0017-z CrossRef
    3.Wu J, Liu Y, Tang L, Zhang F, Chen F (2010) A study on structural features in early flower development of Jatropha curcas L. and the classification of its inflorescences. Afr J Agric Res 6:275–284
    4.Abdelgadir HA, Jager AK, Johnson SD, Van Staden J (2010) Influence of plant growth regulators on flowering, fruiting, seed oil content, and oil quality of Jatropha curcas. S Afr J Sci 76:440–446
    5.Liu HFF, Kirchoff BK, Wu GJJ, Liao JPP (2007) Microsporogenesis and male gametogenesis in Jatropha curcas L. (Euphorbiaceae). J Torrey Bot Soc 134:335–343CrossRef
    6.Mathooko FM, Mwaniki MW, Nakatsuka A, Shiomi S et al (1999) Expression characteristics of CS-ACS1, CS-ACS2 and CS-ACS3, three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in cucumber (Cucumis sativus L.) fruit under carbon dioxide stress. Plant Cell Physiol 40:164–172CrossRef PubMed
    7.Boualem A, Fergany M, Fernandez R, Troadec C et al (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836–838. doi:10.​1126/​science.​1159023 CrossRef PubMed
    8.Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191. doi:10.​1016/​j.​cell.​2008.​01.​047 CrossRef PubMed
    9.Siddiqi I, Ganesh G, Grossniklaus U, Subbiah V (2000) The dyad gene is required for progression through female meiosis in Arabidopsis. Development 127:197–207PubMed
    10.Higuchi M, Pischke MS, Mahonen AP, Miyawaki K et al (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci 101:8821–8826. doi:10.​1073/​pnas.​0402887101 CrossRef PubMed PubMedCentral
    11.Kamiuchi Y, Yamamoto K, Furutani M, Tasaka M, Aida M (2014) The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development. Front Plant Sci 5:165. doi:10.​3389/​fpls.​2014.​00165 CrossRef PubMed PubMedCentral
    12.Ceccato L, Masiero S, Roy DS, Bencivenga S et al (2013) Maternal control of PIN1 is required for female gametophyte development in Arabidopsis. PLoS One 8(6):e66148. doi:10.​1371/​journal.​pone.​0066148 CrossRef PubMed PubMedCentral
    13.Li C, Luo L, Fu Q, Niu L, Xu ZF (2014) Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas. BMC Plant Biol 14:125. doi:10.​1186/​1471-2229-14-125 CrossRef PubMed PubMedCentral
    14.Pan BZ, Xu ZF (2010) Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 30:166–174. doi:10.​1007/​s00344-010-9179-3 CrossRef
    15.Chen MS, Pan BZ, Wang GJ, Ni J, Niu L, Xu ZF (2014) Analysis of the transcriptional responses in inflorescence buds of Jatropha curcas exposed to cytokinin treatment. BMC Plant Biol 14:318. doi:10.​1186/​s12870-014-0318-z CrossRef PubMed PubMedCentral
    16.Pan BZ, Chen MS, Ni J, Xu ZF (2014) Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin. BMC Genom 15:974. doi:10.​1186/​1471-2164-15-974 CrossRef
    17. http://​www.​kazusa.​or.​jp/​e/​resources/​database.​html
    18. http://​www.​softberry.​com/​berry.​phtml
    19. http://​primer3plus.​com/​
    20.Sangha JS, Gu K, Kaur J, Yin Z (2010) An improved method for RNA isolation and cDNA library construction from immature seeds of Jatropha curcas L. BMC Res Notes 3:126. doi:10.​1186/​1756-0500-3-126 CrossRef PubMed PubMedCentral
    21.Zhang L, He LL, Fu QT, Xu ZF (2013) Selection of reliable reference genes for gene expression studies in the biofuel plant Jatropha curcas using real-time quantitative PCR. Int J Mol Sci 14:24338–24354. doi:10.​3390/​ijms141224338 CrossRef PubMed PubMedCentral
    22. http://​www.​dna.​affrc.​go.​jp/​PLACE
    23.Galbiati F, Sinha Roy D, Simonini S, Cucinotta M et al (2013) An integrative model of the control of ovule primordia formation. Plant J 12:1–10. doi:10.​1111/​tpj.​12309
    24.Mohamed R, Wang CT, Shevchenko CM, Dye SJ et al (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 62:674–688. doi:10.​1111/​j.​1365-313X.​2010.​04185.​x CrossRef PubMed
    25.Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N (2008) The FLOWERING LOCUS T/TERMINAL FLOWER 1 Family in Lombardy Poplar. Plant Cell Physiol 49:291–300. doi:10.​1093/​pcp/​pcn010 CrossRef PubMed
    26.Zeng HY, Lu YT, Yang XM et al (2015) Ectopic expression of the BoTFL1-like gene of Bambusa oldhamii delays blossoming in Arabidopsis thaliana and rescues the tfl1 mutant phenotype. Genet Mol Res 14:9306–9317. doi:10.​4238/​2015.​August.​10.​11 CrossRef PubMed
    27.Conti L, Bradley D (2007) TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant cell 19(767–78):78. doi:10.​1105/​tpc.​106.​049767
    28.Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89. doi:10.​1126/​science.​1185244 CrossRef PubMed
    29.Kazama Y, Fujiwara MT, Koizumi A, Nishihara K et al (2009) A SUPERMAN-like gene is exclusively expressed in female flowers of the dioecious plant Silene latifolia. Plant Cell Physiol 50:1127–1141. doi:10.​1093/​pcp/​pcp064 CrossRef PubMed
    30.Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP (2004) Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008–1019. doi:10.​1104/​pp.​104.​039578 CrossRef PubMed PubMedCentral
    31.Ishida T, Aida M, Takada S, Tasaka M (2000) Involvement of CUP-SHAPED COTYLEDON Genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol 41:60–67CrossRef PubMed
    32.Zluvova J, Nicolas M, Berger A, Negrutiu I, Monéger F (2006) Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia. Proc Natl Acad Sci 103:18854–18859. doi:10.​1073/​pnas.​0606622103 CrossRef PubMed PubMedCentral
    33.Huang S, Cerny RC, Qi Y, Bhat D et al (2003) Transgenic Studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol 131:1270–1282. doi:10.​1104/​pp.​102.​018598 CrossRef PubMed PubMedCentral
    34.Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741–753. doi:10.​1105/​tpc.​2.​8.​741 CrossRef PubMed PubMedCentral
    35.Barak M, Trebitsh T (2007) A developmentally regulated GTP binding tyrosine phosphorylated protein A-like cDNA in cucumber (Cucumis sativus L.). Plant Mol Biol 65:829–837. doi:10.​1007/​s11103-007-9246-8 CrossRef PubMed
    36.Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138. doi:10.​1046/​j.​1365-313X.​2003.​01945.​x CrossRef PubMed
    37.Li XG, Su YH, Zhao XY, Li W, Gao XQ, Zhang XS (2010) Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene 450:109–120. doi:10.​1016/​j.​gene.​2009.​11.​003 CrossRef PubMed
    38.Cucinotta M, Colombo L, Roig-Villanova I (2014) Ovule development, a new model for lateral organ formation. Front Plant Sci 5:117. doi:10.​3389/​fpls.​2014.​00117 CrossRef PubMed PubMedCentral
    39.Bencivenga S, Simonini S, Benková E, Colombo L (2012) The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. Plant Cell 24:2886–2897. doi:10.​1105/​tpc.​112.​100164 CrossRef PubMed PubMedCentral
    40.Sakai H, Krizek BA, Jacobsen SE, Meyerowitz EM (2000) Regulation of SUP expression identifies multiple regulators involved in Arabidopsis floral meristem development. Plant Cell 12:1607–1618CrossRef PubMed PubMedCentral
    41.Ramireddy E, Brenner WG, Pfeifer A, Heyl A, Schmülling T (2013) In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence. Plant Cell Physiol 54:1079–1092. doi:10.​1093/​pcp/​pct060 CrossRef PubMed
    42.Bao Y, Dharmawardhana P, Arias RS, Allen MB, Ma C, Strauss SH (2009) WUS and STM-based reporter genes for studying meristem development in poplar. Plant Cell Rep 28:947–962. doi:10.​1007/​s00299-009-0685-3 CrossRef PubMed
    43.Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn GW, Fisher RK (1995) The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83:735–742. doi:10.​1016/​0092-8674(95)90186-8 CrossRef PubMed
    44.Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H (2004) A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol 134:1080–1087. doi:10.​1104/​pp.​103.​035998 CrossRef PubMed PubMedCentral
    45.Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513. doi:10.​1104/​pp.​103.​034967 CrossRef PubMed PubMedCentral
    46.Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E (2005) Identification of selements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol 138:757–766. doi:10.​1104/​pp.​104.​057984 CrossRef PubMed PubMedCentral
    47.Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604. doi:10.​1105/​tpc.​011650 CrossRef PubMed PubMedCentral
    48.Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78. doi:10.​1105/​tpc.​006130 CrossRef PubMed PubMedCentral
    49.Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21:4327–4337. doi:10.​1093/​emboj/​cdf432 CrossRef PubMed PubMedCentral
    50.Hong RL, Hamaguchi L, Busch MA, Weigel D (2003) Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing. Plant Cell 15:1296–1309. doi:10.​1105/​tpc.​009548 CrossRef PubMed PubMedCentral
    51.Sutoh K, Yamauchi D (2003) Two cis-acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. Plant J 34:636–645CrossRef
    52.Perry SE, Lehti MD, Fernandez DE (1991) The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins. Plant Physiol 120:121–129CrossRef
    53.Okushima Y, Mitina I, Quach HL, Theologis A (2005) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43:29–46. doi:10.​1111/​j.​1365-313X.​2005.​02426.​x CrossRef PubMed
    54.Cremer F, Lonnig WE, Saedler H, Huijser P (2001) The delayed terminal flower phenotype is caused by a conditional mutation in the CENTRORADIALIS Gene of Snapdragon. Plant Physiol 126:1031–1041CrossRef PubMed PubMedCentral
    55.Deng Y, Dong H, Mu J, Ren B et al (2010) Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth. Plant Cell 22:1232–1248. doi:10.​1105/​tpc.​108.​065128 CrossRef PubMed PubMedCentral
    56.Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations. Plant Cell 15:2532–2550. doi:10.​1105/​tpc.​014928 CrossRef PubMed PubMedCentral
    57.Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397–418PubMed
    58.Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166CrossRef PubMed
    59.Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322:1535–1539. doi:10.​1126/​science.​1163927 CrossRef PubMed
    60.Manzano S, Martínez C, Gómez P, Garrido D, Jamilena M (2010) Cloning and characterisation of two CTR1-like genes in Cucurbita pepo: regulation of their expression during male and female flower development. Sex Plant Reprod 23:301–313. doi:10.​1007/​s00497-010-0140-1 CrossRef PubMed
    61.Takei k, Yamaya, T, and Sakakibara,H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. JBC Papers in Press 279:41866–41872. doi:10.​1074/​jbc.​M406337200
    62.Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209. doi:10.​1105/​tpc.​010192 CrossRef PubMed PubMedCentral
    63.Ju C, Yoon GM, Shemansky JM, Lin DY et al (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci 109:19486–19491. doi:10.​1073/​pnas.​1214848109 CrossRef PubMed PubMedCentral
    64.Ando S, Sato Y, Kamachi S, Sakai S (2001) Isolation of a MADS-box gene (ERAF17) and correlation of its expression with the induction of formation of female flowers by ethylene in cucumber plants (Cucumis sativus L.). Planta 213:943–952. doi:10.​1007/​s004250100571 CrossRef PubMed
    65.Hall BP, Shakeel SN, Amir M et al (2012) Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol 159:682–695. doi:10.​1104/​pp.​112.​196790 CrossRef PubMed PubMedCentral
    66.Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859CrossRef PubMed
    67.Kasahara RD, Portereiko MF, Sandaklie-NikolovaL Rabiger DS, Drews GN (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–2992. doi:10.​1105/​tpc.​105.​034603 CrossRef PubMed PubMedCentral
    68.Talbert PB, Adler HT, Parks DW, Comai L (1995) The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 21:2723–2735
    69.Preston JC, Hileman LC (2011) SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes. Plant J 62:704–712. doi:10.​1111/​j.​1365-313X.​2010.​04184.​x CrossRef
    70.Ray A, Lang JD, Golden T, Ray S (1996) SHORT INTEGUMENT (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time. Development 122:2631–2638PubMed
    71.Groszmann M, Paicu T, Alvarez JP, Swain SM, Smyth DR (2011) SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Plant J 68:816–829. doi:10.​1111/​j.​1365-313X.​2011.​04732.​x CrossRef PubMed
    72.Motte P, Saedler H, Schwarz-Sommer Z (1998) STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis. Development 125:71–84PubMed
    73.Sablowski R (2009) Cytokinin and WUSCHEL tie the knot around plant stem cells. Proc Natl Acad Sci 106:6016–16017. doi:10.​1073/​pnas.​0909300106 CrossRef
  • 作者单位:Manali Gangwar (1)
    Hemant Sood (1)
    Rajinder Singh Chauhan (1)

    1. Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, Solan, Himachal Pradesh, India
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Animal Anatomy, Morphology and Histology
    Animal Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4978
文摘
Jatropha curcas, has been projected as a major source of biodiesel due to high seed oil content (42 %). A major roadblock for commercialization of Jatropha-based biodiesel is low seed yield per inflorescence, which is affected by low female to male flower ratio (1:25–30). Molecular dissection of female flower development by analyzing genes involved in phase transitions and floral organ development is, therefore, crucial for increasing seed yield. Expression analysis of 42 genes implicated in floral organ development and sex determination was done at six floral developmental stages of a J. curcas genotype (IC561235) with inherently higher female to male flower ratio (1:8–10). Relative expression analysis of these genes was done on low ratio genotype. Genes TFL1, SUP, AP1, CRY2, CUC2, CKX1, TAA1 and PIN1 were associated with reproductive phase transition. Further, genes CUC2, TAA1, CKX1 and PIN1 were associated with female flowering while SUP and CRY2 in female flower transition. Relative expression of these genes with respect to low female flower ratio genotype showed up to ~7 folds increase in transcript abundance of SUP, TAA1, CRY2 and CKX1 genes in intermediate buds but not a significant increase (~1.25 folds) in female flowers, thereby suggesting that these genes possibly play a significant role in increased transition towards female flowering by promoting abortion of male flower primordia. The outcome of study has implications in feedstock improvement of J. curcas through functional validation and eventual utilization of key genes associated with female flowering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700