Special methods for aerodynamic-moment calculations from parachute FSI modeling
详细信息    查看全文
  • 作者:Kenji Takizawa ; Tayfun E. Tezduyar ; Cody Boswell ; Yuki Tsutsui…
  • 关键词:Space–time fluid–structure interaction methods ; DSD/SST method ; NASA Orion spacecraft parachutes ; JAXA subscale parachutes ; Aerodynamic moment ; Special methods
  • 刊名:Computational Mechanics
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:55
  • 期:6
  • 页码:1059-1069
  • 全文大小:16,378 KB
  • 参考文献:1.Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19:125-69. doi:10.-007/?s11831-012-9070-4 MathSciNet View Article
    2.Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, New York, ISBN 978-0470978771View Article
    3.Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, ?iseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space-time methods. Arch Comput Methods Eng. published online, May 2014. doi:10.-007/?s11831-014-9113-0
    4.Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012) Fluid-structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835-54. doi:10.-007/?s00466-012-0761-3 MATH View Article
    5.Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307-38. doi:10.-142/?S021820251340005- MATH MathSciNet View Article
    6.Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351-364. doi:10.-007/?s00466-013-0880-5 MATH View Article
    7.Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54:1203-220. doi:10.-007/?s00466-014-1052-y
    8.Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech. published online, 2014. doi:10.-007/?s00466-014-1069-2
    9.Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1-4. doi:10.-016/?S0065-2156(08)70153-4 MATH MathSciNet
    10.Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339-51. doi:10.-016/-045-7825(92)90059-S MATH MathSciNet View Article
    11.Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353-71. doi:10.-016/-045-7825(92)90060-W MATH MathSciNet View Article
    12.Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555-75. doi:10.-002/?fld.-05 MATH MathSciNet View Article
    13.Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855-00. doi:10.-002/?fld.-430 MATH MathSciNet View Article
    14.Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247-67. doi:10.-007/?s00466-011-0571-z MATH MathSciNet View Article
    15.Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22:1230001. doi:10.-142/?S021820251230001- MathSciNet View Article
    16.Takizawa K (2014) Computational engineering analysis with the new-generation space–time methods. Comput Mech 54:193-11. doi:10.-007/?s00466-014-0999-z MATH MathSciNet View Article
    17.Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329-49MATH MathSciNet View Article
    18.Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190:3009-019MATH View Article
    19.van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Sci Comput 27:599-21MATH MathSciNet View Article
    20.Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310-22MATH MathSciNet View Article
    21.Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38:403-16MATH View Article
    22.Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3-7MATH MathSciNet View Article
    23.Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of
  • 作者单位:Kenji Takizawa (1)
    Tayfun E. Tezduyar (2)
    Cody Boswell (2)
    Yuki Tsutsui (1)
    Kenneth Montel (2)

    1. Department of Modern Mechanical Engineering and Waseda Institute for Advanced Study, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo, 169-8050, Japan
    2. Mechanical Engineering, Rice University, MS 321, 6100 Main Street, Houston, TX, 77005, USA
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Numerical and Computational Methods in Engineering
    Computational Science and Engineering
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0924
文摘
The space–time fluid–structure interaction (STFSI) methods for 3D parachute modeling are now at a level where they can bring reliable, practical analysis to some of the most complex parachute systems, such as spacecraft parachutes. The methods include the Deforming-Spatial-Domain/Stabilized ST method as the core computational technology, and a good number of special FSI methods targeting parachutes. Evaluating the stability characteristics of a parachute based on how the aerodynamic moment varies as a function of the angle of attack is one of the practical analyses that reliable parachute FSI modeling can deliver. We describe the special FSI methods we developed for this specific purpose and present the aerodynamic-moment data obtained from FSI modeling of NASA Orion spacecraft parachutes and Japan Aerospace Exploration Agency (JAXA) subscale parachutes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700