Does maternal environmental condition during reproductive development induce genotypic selection in Picea abies?
详细信息    查看全文
  • 作者:Guillaume Besnard (1) (2)
    Virginie Acheré (2)
    Sylvain Jeandroz (2)
    ?ystein Johnsen (3)
    Patricia Faivre Rampant (2)
    Rüdiger Baumann (4)
    Gerhard Müller-Starck (4)
    Torre Skr?ppa (3)
    Jean-Michel Favre (2)
  • 关键词:adaptability ; segregation distortion ; parental effect ; Picea abies ; post ; zygotic selection ; adaptabilité ; distorsion de ségrégation ; effet parental ; Picea abies ; sélection post ; zygotique
  • 刊名:Annals of Forest Science
  • 出版年:2008
  • 出版时间:January 2008
  • 年:2008
  • 卷:65
  • 期:1
  • 页码:109
  • 全文大小:125KB
  • 参考文献:1. Acheré V., Faivre Rampant P., Jeandroz S., Besnard G., Markussen T., Aragones A., Fladung M., Ritter E., Favre J.M., A saturated consensus linkage map of / Picea abies including AFLP, SSR, STS, 5S rDNA and morphological markers, Theor. Appl. Genet. 108 (2004) 1602-613. CrossRef
    2. Agrawal A.A., Herbivory and maternal effects: Mechanisms and consequences of transgenerational induced plant resistance, Ecology 83 (2002) 3408-415. CrossRef
    3. Archaux F., Wolters V., Impact of summer drought on forest biodiversity: what do we know? Ann. For. Sci. 63 (2006) 645-52. CrossRef
    4. Bernasconi G., Ashman T.L., Birkhead T.R., Bishop J.D.D., Grossniklaus U., Kubli E., Marshall D.L., Schmid B., Skogsmyr I., Snook R.R., Taylor D., Till-Bottraud I., Ward P.I., Zeh D.W., Hellriegel B., Evolutionary ecology of the prezygotic stage, Science 303 (2004) 971-75. CrossRef
    5. Besnard G., Acheré V., Faivre Rampant P., Favre J.M., Jeandroz S., A set of cross-species amplifying microsatellite markers developed from DNA-sequence databanks in / Picea (Pinaceae), Mol. Ecol. Notes 3 (2003) 380-83. CrossRef
    6. Bréda N., Huc R., Granier A., Dreyer E., Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences, Ann. For. Sci. 63. (2006) 625-44. CrossRef
    7. Buckler E.S. TV, Phelps-Durr T.L., Buckler C.S.K., Dawe R.K., Doebley J.F., Holtsford T.P., Meiotic drive of chromosomal knobs reshaped the maize genome, Genetics 153 (1999) 415-26.
    8. Chagné D., Brown G., Lalanne C., Madur D., Plot D., Neale D., Plomion C., Comparative and QTL mapping between maritime and loblolly pines, Mol. Breed. 12 (2003) 185-95. CrossRef
    9. Chakraverti A., Lasher L.K., Reefer J.E., A maximum likelihood method for estimating genome length using genetic linkage data, Genetics 128 (1991) 175-82.
    10. Collignon A.M., nVan de Sype H., Favre J.M., Geographical variation in random amplified polymorphic DNA and quantitative traits in Norway spruce, Can. J. For. Res. 32 (2002) 266-82. CrossRef
    11. Falconer D.S., Introduction to quantitative genetics, 3rd ed., Longman Scientific and Technical, John Wiley and Sons, NY, 1989, 438 pp.
    12. Galloway L.F., Maternal effects provide phenotypic adaptation to local environmental conditions, New Phytol. 166 (2005) 93-00. CrossRef
    13. Grattapaglia D., Sederoff R., Genetic linkage maps of / Eucalyptus grandis and / Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers, Genetics 137 (1994) 1121-137.
    14. Grivet D., Jeandroz S., Favre J.M., / Nad1 b/c intron polymorphism reveals maternal inheritance of the mitochondrial genome in / Picea abies, Theor. Appl. Genet. 99 (1999) 346-49. CrossRef
    15. Hall M.C., Willis J.H., Transmission ratio distortion in intraspecific hybrids of / Mimulus guttatus: implications for genomic divergence, Genetics 170 (2005) 375-86. CrossRef
    16. Hamrick J.L., Response of forest trees to global environmental changes, For. Ecol. Manage. 197 (2004) 323-35. CrossRef
    17. Hodgetts R.B., Aleksiuk M.A., Brown A., Clarke C., Macdonald E., Nadeem S., Khasa D., Development of microsatellite markers for white spruce ( / Picea glauca) and related species, Theor. Appl. Genet. 102 (2001) 1252-258. CrossRef
    18. Hulbert S., Ilott T., Legg E.J., Lincoln S., Lander E., Michelmore R., Genetic analysis of the fungus / Bremia lactucae, using restriction length polymorphism, Genetics 120 (1988) 947-58.
    19. Jaramillo-Correa J.P., Beaulieu J., Bousquet J., Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce, Mol. Ecol. 10 (2001) 2729-740. CrossRef
    20. Johnsen ?., Skr?ppa T., Junttila O., D?hlen O.G., Influence of the female flowering environment on autumn frost-hardiness of / Picea abies progenies, Theor. Appl. Genet. 92 (1996) 797-02. CrossRef
    21. Johnsen ?., D?hlen O.G., ?streng G., Skr?ppa T. Daylength and temperature during seed production interactively affect adaptive performance of / Picea abies progenies, New Phytol. 168 (2005) 589-96. CrossRef
    22. Johnsen ?., Fossdal C.G., Nagy N., M?lmann J., D?hlen O.G., Skr?ppa T., Climatic adaptation in / Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation, Plant Cell Environ. 28 (2005) 1090-102. CrossRef
    23. Karhu A., Hurme P., Karjalainen M., Karvonen P., Karkkainen K., Neale D., Savolainen O., Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93 (1996) 215-21. CrossRef
    24. Karl T.R., Trenberth K.E., Modern global climate change, Science 302 (2003) 1719-723. CrossRef
    25. Kosambi D.D., The estimation of map distances from recombination values. Ann. Eugen. 12 (1944) 172-75. CrossRef
    26. Kremer A., Genetic diversity and phenotypic variability of forest trees, Genet. Sel. Evol. 26 (1994) S105-S123. CrossRef
    27. Lacy E.P., What is an adaptive environmentally induced parental effect? in: Mousseau T.A., Fox C.W. (Eds.), Maternal effects as adaptations, Oxford University Press, Oxford, 1998.
    28. Lenormand T., Dutheil J., Recombination difference between sexes: a role for haploid selection, PLoS Biol. 3 (2005) 396-03. CrossRef
    29. Maron J.L., Vila M., Bommarco R., Elmendorf S., Beardsley P., Rapid evolution of an invasive plant, Ecol. Monogr. 74 (2004) 261-80. CrossRef
    30. Owens J.N., Blake M.D., Forest tree seed production, Information Report PI-X-53 Petawawa National Forestry Institute, Chalk River, Ontario, 1985, 161 p.
    31. Owens J.N., Johnsen ?., D?hlen O.G., Skr?ppa T., Potential effects of temperature on early reproductive development and progeny performance in / Picea abies (L.) Karst., Scand. J. Forest Res. 16 (2001) 221-37.
    32. Paglia G.P., Olivieri A.M., Morgante M., Towards secondgeneration STS (sequence-tagged sites) linkage maps in conifers: a genetic map of Norway spruce ( / Picea abies K.), Mol. Gen. Genet. 258 (1998) 466-78. CrossRef
    33. Pardo-Manuel de Villena F., de la Casa-Esperón E., Sapienza C., Natural selection and the function of genome imprinting: beyond the silenced minority, Trends Genet. 16 (2000) 573-79. CrossRef
    34. Pasonen H.L., Pulkkinen P., K?rkk?inen K., Genotype-environment interactions in pollen competitive ability in an anemophilous tree, / Betula pendula Roth., Theor. Appl. Genet. 105 (2002) 465-73. CrossRef
    35. Perry D.J., Bousquet J., Sequence-tagged-site (STS) markers of arbitrary genes: the utility of black spruce-derived STS primers in other conifers, Theor. Appl. Genet. 97 (1998) 735-43. CrossRef
    36. Pfeiffer A., Olivieri A.M., Morgante M., Identification and characterization of microsatellites in Norway spruce ( / Picea abies K.), Genome 40 (1997) 411-19. CrossRef
    37. Rajora O.P., Rahman M.H., Dayanandan S., Mosseler A., Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce ( / Picea glauca) and their usefulness in other spruce species, Mol. Gen. Genet. 264 (2001) 871-82. CrossRef
    38. Rapp R.A., Wendel J.F., Epigenetics and plant evolution, New Phytol. 168 (2005) 81-1. CrossRef
    39. Sarvas R., Investigations on the flowering and seed crop of / Picea abies, Communicationes Instituti Forestalls Fenniae 67 (1968) 1-4.
    40. Saxe H., Cannell M.G.R., Johnsen ?., Ryan M.G., Vourlitis G., Tree and forest functioning in response to global warming, New Phytol. 149 (2001) 369-99. CrossRef
    41. Schmidtling R.C., Hipkins V., The after-effects of reproductive environment in shortleaf pine, Forestry 77 (2004) 287-95. CrossRef
    42. Schubert R., Sperisen C., Müller-Starck G., La Scala S., Ernst D., Sandermann H., H?ger K.P., The cinnamyl alcohol dehydrogenase gene structure in / Picea abies (L.) Karst.: genomic sequences, southern hybridization, genetic analysis and phylogenetic relationships, Trees Struct. Funct.12 (1998) 453-63.
    43. Schubert R., Müller-Starck G., Riegel R., Development of ESTPCR markers and monitoring their intrapopulational genetic variation in / Picea abies (L.) Karst., Theor. Appl. Genet. 103 (2001) 1223-231. CrossRef
    44. Scotti I., Magni F., Fink R., Powell W., Binelli G., Hedley P.E., Microsatellite repeats are not randomly distributed within Norway spruce ( / Picea abies K.) expressed sequences, Genome 43 (2000) 41-6.
    45. Scotti I., Magni F., Paglia G.P., Morgante M., Trinucleotide microsatellites in Norway spruce ( / Picea abies): their features and the development of molecular markers, Theor. Appl. Genet. 106 (2002) 46-0.
    46. Scotti I., Paglia G.P., Magni F., Morgante M., Efficient development of dinucleotide microsatellite markers in Norway spruce ( / Picea abies Karst.) through dot-blot selection, Theor. Appl. Genet. 104 (2002) 1035-041. CrossRef
    47. Scotti I., Burelli A., Cattonaro F., Chagné D., Fuller J., Hedley P.E., Jansson G., Lalanne C., Madur D., Neale D., Plomion C., Powell W., Troggio M., Morgante M., Analysis of the distribution of marker classes in a genetic linkage map: a case study in Norway spruce ( / Picea abies Karst.), Tree Genet. Genomes 1 (2005) 93-02. CrossRef
    48. Skr?ppa T., Kohmann K., Adaptation to local conditions after one generation in Norway spruce, For. Genet. 4 (1997) 165-80.
    49. Sokal R.R., Rohlf F.J., Biometry, 4th ed., WH Freeman, New York, 1998.
    50. Taylor D.R., Ingvarsson P.K., Common features of segregation distortion in plants and animals, Genetica 117 (2003) 27-5. CrossRef
    51. Temesgen B., Brown G.R., Harry D.E., Kinlaw C.S., Sewell M.M., Neale D.B., Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine ( / Pinus taeda L.), Theor. Appl. Genet. 102 (2001) 664-75. CrossRef
    52. Trontin J.F., Grandemange C., Favre J.M., Two highly divergent 5S rDNA unit size classes occur in composite tandem array in European larch ( / Larix decidua Mill.) and Japanese larch ( / Larix kaempferi (Lamb.) Carr.), Genome 42 (1999) 837-48.
    53. Van Ooijen J.W., Voorrips R.E., JoinMap 3.0, Software for the calculation of genetic linkage maps, Plant Research International, Wageningen, The Netherlands, 2001, and website: http://www.plant.wageningen-ur.nl.
    54. Vogl C., Xu S., Multiple point mapping of viability and segregation distorting loci using molecular marker, Genetics 155 (2000) 1439-447.
    55. Webber J., Ott P., Owens J., Binder W., Elevated temperature during reproductive devlopment affects traits and progeny performance in / Picea glauca × engelmannii complex, Tree Physiol. 25 (2005) 1219-227.
    56. Young W.P., Schupp J.M., Keim P.D.N.A., methylation and AFLP distribution in the soybean genome, Theor. Appl. Genet. 99 (1999) 785-90. CrossRef
  • 作者单位:Guillaume Besnard (1) (2)
    Virginie Acheré (2)
    Sylvain Jeandroz (2)
    ?ystein Johnsen (3)
    Patricia Faivre Rampant (2)
    Rüdiger Baumann (4)
    Gerhard Müller-Starck (4)
    Torre Skr?ppa (3)
    Jean-Michel Favre (2)

    1. Department of Ecology and Evolution, UNIL, Biophore, 1015, Lausanne, Switzerland
    2. UMR INRA/UHP 1136 “Tree-Microbe Interactions- Université H. Poincaré Nancy I, Faculté des Sciences, BP 239, 54506, Vand?uvre-Lès-Nancy, France
    3. Norwegian Forest and Landscape Institute, PO Box 115, 1431, As, Norway
    4. Weihenstephan Center of Life and Food Sciences, Section of Forest Genetics, Technische Universit?t München, Am Hochanger 13, 85354, Freising, Germany
文摘
In forest trees, environmental conditions during reproduction can greatly influence progeny performance. This phenomenon probably results from adaptive phenotypic plasticity but also may be associated with genotypic selection. In order to determine whether selective effects during the reproduction are environment specific, single pair-crosses of Norway spruce were studied in two contrasted maternal environments (warm and cold conditions). One family expressed large and the other small phenotypic differences between these crossing environments. The inheritance of genetic polymorphism was analysed at the seed stage. Four parental genetic maps covering 66 to 78% of the genome were constructed using 190 to 200 loci. After correcting for multiple testing, there is no evidence of locus under strong and repeatable selection. The maternal environment could thus only induce limited genotypic-selection effects during reproductive steps, and performance of progenies may be mainly affected by a long-lasting epigenetic memory regulated by temperature and photoperiod prevailing during seed production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700