Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity
详细信息    查看全文
  • 作者:Barbara Montanini (1) (2)
    Damien Blaudez (1)
    Sylvain Jeandroz (1)
    Dale Sanders (3)
    Michel Chalot (1)
  • 刊名:BMC Genomics
  • 出版年:2007
  • 出版时间:December 2007
  • 年:2007
  • 卷:8
  • 期:1
  • 全文大小:1102KB
  • 参考文献:1. Hall JL, Williams LE: Transition metal transporters in plants. / J Exp Bot 2003,54(393):2601鈥?613. CrossRef
    2. Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M: Overview of mammalian zinc transporters. / Cell Mol Life Sci 2004,61(1):49鈥?8. CrossRef
    3. Gaither LA, Eide DJ: Eukaryotic zinc transporters and their regulation. / Biometals 2001,14(3鈥?):251鈥?70. CrossRef
    4. Nies DH: Efflux-mediated heavy metal resistance in prokaryotes. / FEMS Microbiol Rev 2003,27(2鈥?):313鈥?39. CrossRef
    5. Nies DH, Silver S: Ion efflux systems involved in bacterial metal resistances. / J Ind Microbiol 1995,14(2):186鈥?99. CrossRef
    6. Chao Y, Fu D: Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. / J Biol Chem 2004,279(13):12043鈥?2050. CrossRef
    7. Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D: FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. / Arch Microbiol 2005,183(1):9鈥?8. CrossRef
    8. Guffanti AA, Wei Y, Rood SV, Krulwich TA: An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. / Mol Microbiol 2002,45(1):145鈥?53. CrossRef
    9. MacDiarmid CW, Milanick MA, Eide DJ: Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. / J Biol Chem 2002,277(42):39187鈥?9194. CrossRef
    10. Anton A, Grosse C, Reissmann J, Pribyl T, Nies DH: CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. / J Bacteriol 1999,181(22):6876鈥?881.
    11. Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR: Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. / Plant Cell 2003,15(5):1131鈥?142. CrossRef
    12. Munkelt D, Grass G, Nies DH: The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. / J Bacteriol 2004,186(23):8036鈥?043. CrossRef
    13. Persans MW, Nieman K, Salt DE: Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. / Proc Natl Acad Sci USA 2001,98(17):9995鈥?0000. CrossRef
    14. Wei Y, Fu D: Selective metal binding to a membrane-embedded aspartate in the Escherichia coli metal transporter YiiP (FieF). / J Biol Chem 2005,280(40):33716鈥?3724. CrossRef
    15. Paulsen IT, Saier MH Jr.: A novel family of ubiquitous heavy metal ion transport proteins. / J Membr Biol 1997,156(2):99鈥?03. CrossRef
    16. Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML: Phylogenetic relationships within cation transporter families of Arabidopsis. / Plant Physiol 2001,126(4):1646鈥?667. CrossRef
    17. Pfam::Home Protein families database of alignments and HMMs[http://pfam.cgb.ki.se/]
    18. Haney CJ, Grass G, Franke S, Rensing C: New developments in the understanding of the cation diffusion facilitator family. / J Ind Microbiol Biotechnol 2005,32(6):215鈥?26. CrossRef
    19. Li L, Kaplan J: The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. / J Biol Chem 2001,276(7):5036鈥?043. CrossRef
    20. Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Mori K, Iwanaga T, Nagao M: Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. / J Biol Chem 2002,277(21):19049鈥?9055. CrossRef
    21. Cragg RA, Christie GR, Phillips SR, Russi RM, Kury S, Mathers JC, Taylor PM, Ford D: A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. / J Biol Chem 2002,277(25):22789鈥?2797. CrossRef
    22. Ellis CD, Macdiarmid CW, Eide DJ: Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. / J Biol Chem 2005,280(31):28811鈥?8818. CrossRef
    23. Blaudez D, Kohler A, Martin F, Sanders D, Chalot M: Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. / Plant Cell 2003,15(12):2911鈥?928. CrossRef
    24. Suzuki T, Ishihara K, Migaki H, Ishihara K, Nagao M, Yamaguchi-Iwai Y, Kambe T: Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. / J Biol Chem 2005,280(35):30956鈥?0962. CrossRef
    25. Wei Y, Li H, Fu D: Oligomeric state of the Escherichia coli metal transporter YiiP. / J Biol Chem 2004,279(38):39251鈥?9259. CrossRef
    26. Bloss T, Clemens S, Nies DH: Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. / Planta 2002,214(5):783鈥?91. CrossRef
    27. Jirakulaporn T, Muslin AJ: Cation diffusion facilitator proteins modulate Raf-1 activity. / J Biol Chem 2004,279(26):27807鈥?7815. CrossRef
    28. Murgia C, Vespignani I, Cerase J, Nobili F, Perozzi G: Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cells. / Am J Physiol 1999,277(6 Pt 1):G1231鈥?.
    29. Anton A, Weltrowski A, Haney CJ, Franke S, Grass G, Rensing C, Nies DH: Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli. / J Bacteriol 2004,186(22):7499鈥?507. CrossRef
    30. Lee SM, Grass G, Haney CJ, Fan B, Rosen BP, Anton A, Nies DH, Rensing C: Functional analysis of the Escherichia coli zinc transporter ZitB. / FEMS Microbiol Lett 2002,215(2):273鈥?78. CrossRef
    31. Wei Y, Fu D: Binding and transport of metal ions at the dimer interface of the Escherichia coli metal transporter YiiP. / J Biol Chem 2006,281(33):23492鈥?3502. CrossRef
    32. Kumar S, Tamura K, Nei M: MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. / Comput Appl Biosci 1994,10(2):189鈥?91.
    33. ScanProsite [http://www.expasy.org/tools/scanprosite/]
    34. Sim LC, Yeo WM, Chow VT: The novel human HUEL (C4orf1) protein shares homology with the DNA-binding domain of the XPA DNA repair protein and displays nuclear translocation in a cell cycle-dependent manner. / Int J Biochem Cell Biol 2002,34(5):487鈥?04. CrossRef
    35. PlantsT World Wide Web site[http://plantst.sdsc.edu/]
    36. Arrivault S, Senger T, Kramer U: The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. / Plant J 2006,46(5):861鈥?79. CrossRef
    37. Palmiter RD, Cole TB, Findley SD: ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. / Embo J 1996,15(8):1784鈥?791.
    38. Palmiter RD, Cole TB, Quaife CJ, Findley SD: ZnT-3, a putative transporter of zinc into synaptic vesicles. / Proc Natl Acad Sci U S A 1996,93(25):14934鈥?4939. CrossRef
    39. Huang L, Gitschier J: A novel gene involved in zinc transport is deficient in the lethal milk mouse. / Nat Genet 1997,17(3):292鈥?97. CrossRef
    40. Palmiter RD, Findley SD: Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. / Embo J 1995,14(4):639鈥?49.
    41. Huang L, Kirschke CP, Gitschier J: Functional characterization of a novel mammalian zinc transporter, ZnT6. / J Biol Chem 2002,277(29):26389鈥?6395. CrossRef
    42. Kirschke CP, Huang L: ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. / J Biol Chem 2003,278(6):4096鈥?102. CrossRef
    43. Kamizono A, Nishizawa M, Teranishi Y, Murata K, Kimura A: Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. / Mol Gen Genet 1989,219(1鈥?):161鈥?67. CrossRef
    44. Conklin DS, McMaster JA, Culbertson MR, Kung C: COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. / Mol Cell Biol 1992,12(9):3678鈥?688.
    45. Clemens S, Bloss T, Vess C, Neumann D, Nies DH, Zur Nieden U: A transporter in the endoplasmic reticulum of Schizosaccharomyces pombe cells mediates zinc storage and differentially affects transition metal tolerance. / J Biol Chem 2002,277(20):18215鈥?8221. CrossRef
    46. Grunberg K, Wawer C, Tebo BM, Schuler D: A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. / Appl Environ Microbiol 2001,67(10):4573鈥?582. CrossRef
    47. Li L, Kaplan J: Characterization of two homologous yeast genes that encode mitochondrial iron transporters. / J Biol Chem 1997,272(45):28485鈥?8493. CrossRef
    48. Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJM, Blaudez D, Chalot M, Sanders D: A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. / Proc Natl Acad Sci U S A, / in press.
    49. Broad Institute of MIT and Harvard[http://www-genome.wi.mit.edu]
    50. Lippard SJ, Berg JM: Principles of Bioinorganic Chemistry. Mill Valley, CA, University Science Books 1994.
    51. Desbrosses-Fonrouge AG, Voigt K, Schroder A, Arrivault S, Thomine S, Kramer U: Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. / FEBS Lett 2005,579(19):4165鈥?174. CrossRef
    52. Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE: The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. / Plant J 2004,39(2):237鈥?51. CrossRef
    53. Pittman JK: Managing the manganese: molecular mechanisms of manganese transport and homeostasis. / New Phytol 2005,167(3):733鈥?42. CrossRef
    54. Wei Y, Chen J, Rosas G, Tompkins DA, Holt PA, Rao R: Phenotypic screening of mutations in Pmr1, the yeast secretory pathway Ca2+/Mn2+-ATPase, reveals residues critical for ion selectivity and transport. / J Biol Chem 2000,275(31):23927鈥?3932. CrossRef
    55. Gonnet GH, Cohen MA, Benner SA: Exhaustive matching of the entire protein sequence database. / Science 1992,256(5062):1443鈥?445. CrossRef
    56. WebLogo [http://weblogo.berkeley.edu/logo.cgi]
    57. Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. / Genome Res 2004,14(6):1188鈥?190. CrossRef
    58. Euroscarf European Saccharomyces Cerevisiae ARchive for Functional analysis [http://www.uni-frankfurt.de/fb15/mikro/euroscarf/]
    59. Sherman F: Getting started with yeast. / Methods Enzymol 2002, 350:3鈥?1. CrossRef
    60. Ito H, Fukuda Y, Murata K, Kimura A: Transformation of intact yeast cells treated with alkali cations. / J Bacteriol 1983,153(1):163鈥?68.
  • 作者单位:Barbara Montanini (1) (2)
    Damien Blaudez (1)
    Sylvain Jeandroz (1)
    Dale Sanders (3)
    Michel Chalot (1)

    1. UMR INRA/UHP 1136 Interactions Arbres/Micro-organismes, Nancy-Universit茅, BP 239, 54506, Vandoeuvre, France
    2. Dipartimento di Biochimica e Biologia Molecolare, Universit脿 di Parma, Viale G. P. Usberti 23/A, 43100, Parma, Italy
    3. Biology Department, Area 9, University of York, PO Box 373, YO10 5YW, York, UK
文摘
Background The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of the functional characteristics of some fully characterised CDF transporters, has aimed at identifying molecular determinants of substrate selectivity and at suggesting metal specificity for newly identified CDF transporters. Results Representative CDF members from all three kingdoms of life (Archaea, Eubacteria, Eukaryotes) were retrieved from genomic databases. Protein sequence alignment has allowed detection of a modified signature that can be used to identify new hypothetical CDF members. Phylogenetic reconstruction has classified the majority of CDF family members into three groups, each containing characterised members that share the same specificity towards the principally-transported metal, i.e. Zn, Fe/Zn or Mn. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The function of some conserved amino acids was assessed by site-directed mutagenesis in the poplar Zn2+ transporter PtdMTP1 and compared with similar experiments performed in prokaryotic members. An essential structural role can be assigned to a widely conserved glycine residue, while aspartate and histidine residues, highly conserved in putative transmembrane domains, might be involved in metal transport. The potential role of group-conserved amino acid residues in metal specificity is discussed. Conclusion In the present study phylogenetic and functional analyses have allowed the identification of three major substrate-specific CDF groups. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The modified signature sequence proposed in this work can be used to identify new hypothetical CDF members.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700