An Algebraic Characterisation of Complexity for Valued Constraint
详细信息    查看全文
  • 作者:David A. Cohen ; Martin C. Cooper ; Peter G. Jeavons
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2006
  • 出版时间:2006
  • 年:2006
  • 卷:4204
  • 期:1
  • 页码:107-121
  • 全文大小:482 KB
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
Classical constraint satisfaction is concerned with the feasibility of satisfying a collection of constraints. The extension of this framework to include optimisation is now also being investigated and a theory of so-called soft constraints is being developed. In this extended framework, tuples of values allowed by constraints are given desirability weightings, or costs, and the goal is to find the most desirable (or least cost) assignment. The complexity of any optimisation problem depends critically on the type of function which has to be minimized. For soft constraint problems this function is a sum of cost functions chosen from some fixed set of available cost functions, known as a valued constraint language. We show in this paper that when the costs are rational numbers or infinite the complexity of a soft constraint problem is determined by certain algebraic properties of the valued constraint language, which we call feasibility polymorphisms and fractional polymorphisms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700