Shifts in Cyanobacterial Strain Dominance during the Onset of Harmful Algal Blooms in Florida Bay, USA
详细信息    查看全文
  • 作者:Dianna L. Berry ; Jennifer A. Goleski ; Florian Koch ; Charles C. Wall&#8230
  • 关键词:Cyanobacteria ; Synechococcus ; rRNA ; Harmful algal blooms
  • 刊名:Microbial Ecology
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:70
  • 期:2
  • 页码:361-371
  • 全文大小:1,032 KB
  • 参考文献:1.O'Neil JM et al (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harm Algae 14:313鈥?34View Article
    2.Huang S et al (2012) Novel lineages of Prochlorococcus and Synechococcus in the global oceans. Isme j 6(2):285鈥?7PubMed Central PubMed View Article
    3.Fuller NJ et al (2003) Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol 69(5):2430鈥?3PubMed Central PubMed View Article
    4.Davis TW et al (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harm Algae 8(5):715鈥?25View Article
    5.Paerl and Paul, 2012.
    6.Fourqurean JW, Robblee MB (1999) Florida Bay: a history of recent environmental changes. Estuaries 22:345鈥?57View Article
    7.Sunda WG, Graneli E, Gobler CJ (2006) Positive feedback and the development and persistence of ecosystem disruptive algal blooms. J Phycol 42(5):963鈥?74View Article
    8.Phlips EJ, Badylak S, Lynch TC (1999) Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol Oceanogr 44(4):1166鈥?175View Article
    9.Goleski JA et al (2010) The role of zooplankton grazing and nutrient loading in the occurrence of harmful cyanobacterial blooms in Florida Bay. USA Estuaries and Coasts 33(5):1202鈥?215View Article
    10.SERC (1989鈥?008) Southeast Environmental Research Center, Water Quality Monitoring Network annual data reports
    11.Wall CC et al (2012) Responses of loggerhead sponges Spechiospongia vesparium during harmful cyanobacterial blooms in a sub-tropical lagoon. Mar Ecol Prog Ser 451:31鈥?3View Article
    12.Phlips EJ, Badylak S (1996) Spatial variability in phytoplankton standing crop and composition in a shallow inner-shelf lagoon, Florida Bay. Florida Bull Marine Sci 58(1):203鈥?16
    13.Hall MO et al (1999) Decadal changes in seagrass distribution and abundance in Florida Bay. Estuaries 22(2B):445鈥?59View Article
    14.Chasar LC et al (2005) Evaluating the effect of environmental disturbance on the trophic structure of Florida Bay, USA: Multiple stable isotope analyses of contemporary and historical specimens. Limnol Oceanogr 50(4):1059鈥?072View Article
    15.Drummond, A.J., et al., Geneious v5.5. Available from http://鈥媑eneious.鈥媍om , 2010.
    16.Olson, R.J., et al., Advances in oceanography through flow cytometry. In Particle Analysis in Oceanography, 1991. ed. S. Demers: p. 351鈥?99 Berlin: Springer - Verlag.
    17.Jochem FJ (2001) Morphology and DNA content of bacterioplankton in the northern Gulf of Mexico: Analysis by epifluorescence microscopy and flow cytometry. Aquat Microb Ecol 25(2):179鈥?94View Article
    18.Dempster EL et al (1999) Rapid DNA extraction from ferns for PCR-based analyses. Biotechniques 27(1):66鈥?PubMed
    19.Nubel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63(8):3327鈥?2PubMed Central PubMed
    20.Tkavc R et al (2011) Bacterial communities in the 鈥榩etola鈥?microbial mat from the Se膷ovlje salterns (Slovenia). FEMS Microbiol Ecol 45:48鈥?2View Article
    21.Allen JP et al (2007) The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. Appl Environ Microbiol 73(9):2860鈥?870PubMed Central PubMed View Article
    22.Waterbury JB et al (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can Bull Fish Aquat Sci 214:71鈥?20
    23.Moore LR, Goericke R, Chisholm SW (1995) Comparative physiology of Synechococcus and Prochlorococcus鈥擨nfluence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar Ecol Prog Ser 116(1鈥?):259鈥?75View Article
    24.Zwirglmaier K et al (2009) Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Environ Microbiol 11(7):1767鈥?6PubMed View Article
    25.Scanlan DJ et al (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73(2):249鈥?9PubMed Central PubMed View Article
    26.Anderson SL, McIntosh L (1991) Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J Bacteriol 173(9):2761鈥?PubMed Central PubMed
    27.Schubert H et al (1995) Blooming of Cyanobacteria in Turbulent Water with Steep Light Gradients鈥攖he effect of intermittent light and dark periods on the oxygen evolution capacity of Synechocystis Sp Pcc-6803. Fems Microbiol Ecol 18(3):237鈥?45View Article
    28.Campbell L, Carpenter EJ, Iacono VJ (1983) Identification and enumeration of marine chroococcoid cyanobacteria by immunofluorescence. Appl Environ Microbiol 46(3):553鈥?PubMed Central PubMed
    29.Evans SL, Anderson WT, Jochem FJ (2006) Spatial variability in Florida Bay particulate organic matter composition: combining flow cytometry with stable isotope analyses. Hydrobiologia 569:151鈥?65View Article
    30.Glibert PM et al (2004) Evidence for dissolved organic nitrogen and phosphorous uptake during a cyanobacterial bloom in Florida Bay. Marine Ecology - Progress series 280:73鈥?3View Article
    31.Peterson BJ et al (2006) Potential role of sponge communities in controlling phytoplankton blooms in Florida Bay. Mar Ecol Prog Ser 328:93鈥?03View Article
    32.Anderson DM et al (2008) Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harm Algae 8(1):39鈥?3View Article
    33.Smayda TJ (1997) Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42(5):1137鈥?153View Article
    34.Lennon JT et al (2007) Is there a cost of virus resistance in marine cyanobacteria? Isme J 1(4):300鈥?12PubMed
    35.Paerl HW (1991) Ecophysiological and trophic implications of light-stimulated amino acid utilization in marine picoplankton. Appl Environ Microbiol 57:473鈥?79PubMed Central PubMed
    36.Boyer JN et al (2006) The role of dissolved organic matter bioavailability in promoting phytoplankton blooms in Florida Bay. Hydrobiologia 569:71鈥?5View Article
    37.Li H, Veldhuis MJW, Post AF (1998) Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Marine Ecol - Progress series 173:107鈥?15View Article
    38.Caron DA et al (1991) Grazing and utilization of Chroococcoid Cyanobacteria and Heterotrophic Bacteria by Protozoa in laboratory cultures and a Coastal Plankton Community. Mar Ecol Prog Ser 76(3):205鈥?17View Article
    39.Buskey EJ et al (1997) Disruption of grazer populations as a contributing factor to the initiation of the Texas brown tide algal bloom. Limnol Oceanogr 42(5):1215鈥?222View Article
    40.Liu HB, Buskey EJ (2000) The exopolymer secretions (EPS) layer surrounding Aureoumbra lagunensis cells affects growth, grazing, and behavior of protozoa. Limnol Oceanogr 45(5):1187鈥?191View Article
    41.Strom SL (2008) Microbial ecology of ocean biogeochemistry: a community perspective. Science 320(5879):1043鈥?PubMed View Article
    42.Beardall J et al (2009) Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol 181(2):295鈥?09PubMed View Article
    43.Jiang X, Lonsdale DJ, Gobler CJ (2010) Grazers and vitamins shape chain formation in a bloom-forming dinoflagellate. Cochlodinium polykrikoides Oecologia 164(2):455鈥?64View Article
    44.Long JD et al (2007) Chemical cues induce consumer-specific defenses in a bloom-forming marine phytoplankton. Proc Natl Acad Sci U S A 104(25):10512鈥?PubMed Central PubMed View Article
    45.Lu J (2001) F. Chen, and R.E. Hodson, Distribution, Isolation, Host Specificity, and Diversity of Cyanophages Infecting Marine Synechococcus spp. in River Estuaries. Appl Environ Microbiol 67:3285鈥?290PubMed Central PubMed View Article
  • 作者单位:Dianna L. Berry (1)
    Jennifer A. Goleski (1)
    Florian Koch (1)
    Charles C. Wall (1)
    Bradley J. Peterson (1)
    O. Roger Anderson (2)
    Christopher J. Gobler (1)

    1. School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA
    2. Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9 W, Palisades, NY, 10964, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Ecology
    Geoecology and Natural Processes
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1432-184X
文摘
Cyanobacteria are fundamental components of aquatic phytoplankton communities and some taxa can cause harmful blooms in coastal ecosystems. Harmful cyanobacterial blooms are typically comprised of multiple strains of a single genus or species that cannot be resolved microscopically. Florida Bay, USA, has experienced harmful cyanobacterial blooms that have been associated with the loss of eelgrass, spiny lobsters, and general food web disruption for more than two decades. To identify the strain or strains of cyanobacteria forming blooms in Florida Bay, samples were collected across the system over an annual cycle and analyzed via DNA sequencing using cyanobacterial-specific 16S rRNA gene primers, flow cytometry, and scanning electron microscopy. Analyses demonstrated that the onset of blooms in Florida Bay was coincident with a transformation of the cyanobacterial populations. When blooms were absent, the cyanobacterial population in Florida Bay was dominated by phycoerythrin-containing Synechococcus cells that were most similar to strains within Clade III. As blooms developed, the cyanobacterial community transitioned to dominance by phycocyanin-containing Synechococcus cells that were coated with mucilage, chain-forming, and genetically most similar to the coastal strains within Clade VIII. Clade VIII strains of Synechococcus are known to grow rapidly, utilize organic nutrients, and resist top-down control by protozoan grazers and viruses, all characteristics consistent with observations of cyanobacterial blooms in Florida Bay. Further, the strains of Synechococcus blooming in this system are genetically distinct from the species previously thought to cause blooms in Florida Bay, Synechococcus elongatus. Collectively, this study identified the causative organism of harmful cyanobacterial blooms in Florida Bay, demonstrates the dynamic nature of cyanobacterial stains within genera in an estuary, and affirms factors promoting Synechococcus blooms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700