用户名: 密码: 验证码:
Land-use change and greenhouse gas emissions from corn and cellulosic ethanol
详细信息    查看全文
  • 作者:Jennifer B Dunn (1) <br> Steffen Mueller (2) <br> Ho-young Kwon (3) <br> Michael Q Wang (1) <br>
  • 关键词:Ethanol ; Land ; use change ; Life ; cycle analysis ; Soil carbon content
  • 刊名:Biotechnology for Biofuels
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:6
  • 期:1
  • 全文大小:972 KB
  • 参考文献:1. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. / Science 2008, 319:1238-240. blank" title="It opens in new window">CrossRef <br> 2. Hertel TW, Golub AA, Jones AD, O’Hare M, Plevin RJ, Kammen DM: Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. / BioSci 2010, 60:223-31. bio.2010.60.3.8" target="_blank" title="It opens in new window">CrossRef <br> 3. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA: Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. / Proc Natl Acad Sci 2010, 107:16732-6737. blank" title="It opens in new window">CrossRef <br> 4. Popp A, Dietrich JP, Lotze-Campen H, Klein D, Bauer N, Krause M, Beringer T, Gerten D, Edenhofer O: The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. / Environ Res Lett 2011, 6:034017. blank" title="It opens in new window">CrossRef <br> 5. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P: Land clearing and the biofuel carbon debt. / Science 2008, 319:1235-238. blank" title="It opens in new window">CrossRef <br> 6. Hertel TW, Rose SK, Tol RSJ: / Economic analysis of land use in global climate change policy. New York, NY: Taylor & Francis Group; 2009. <br> 7. Delucchi M: A conceptual framework for estimating the climate impacts of land-use change due to energy crop programs. / Biomass Bioenerg 2011, 35:2337-360. biombioe.2010.11.028" target="_blank" title="It opens in new window">CrossRef <br> 8. Smith P, Davies CA, Ogle S, Zanchi G, Bellarby J, Bird N, Boddey RM, McNamara NP, Powlson D, Cowie A, Noordwijk M, Davis SC, Richter DDB, Kryzanowski L, Wijk MT, Stuart J, Kirton A, Eggar D, Newton-Cross G, Adhya TK, Braimoh AK: Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. / Glob Chang Biol 2012, 18:2089-101. blank" title="It opens in new window">CrossRef <br> 9. Thomas ARC, Bond AJ, Hiscock KM: A multi-criteria based review of models that predict environmental impacts of land use-change for perennial energy crops on water, carbon and nitrogen cycling. [http://dx.doi.org/10.1111/j.1757-1707.2012.01198.x] / GCB Bioenergy 2012. <br> 10. Wang M, Han J, Dunn JB, Cai H, Elgowainy A: Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. / Environ Res Lett 2012, 7:045905. blank" title="It opens in new window">CrossRef <br> 11. Regulation of Fuel and Fuel Additives: Changes to Renewable Fuel Standard Program. / Fed Regist 2010,75(58):14669-5320. <br> 12. / CARB. Sacramento, CA: ; 2009. [ / Proposed regulation to implement the Low carbon fuel standard, Vol. I, staff report: initial statement of reasons] <br> 13. European Commission: / Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. : ; 2009. <br> 14. Plevin RJ, Jones AD, Torn MS, Gibbs HK: Greenhouse gas emissions from biofuels-indirect land use change are uncertain but may be much greater than previously estimated. / Env Sci Technol 2010, 44:8015-021. blank" title="It opens in new window">CrossRef <br> 15. Davis SC, House JI, Diaz-Chavez RA, Molnar A, Valin H, DeLucia EH: How can land-use modelling tools inform bioenergy policies? / Interface Focus 2011, 1:212-23. blank" title="It opens in new window">CrossRef <br> 16. Yang Y, Bae J, Kim J, Suh S: Replacing gasoline with corn ethanol results in significant environmental problem-shifting. / Env Sci Technol 2012, 46:3671-678. blank" title="It opens in new window">CrossRef <br> 17. Hill J, Polasky S, Nelson E, Tilman D, Huo H, Ludwig L, Neumann J, Zheng H, Bonta D: Climate change and health costs of air emissions from biofuels and gasoline. / Proc Natl Acad Sci 2009, 106:2077-082. blank" title="It opens in new window">CrossRef <br> 18. Scown CD, Nazaroff WW, Mishra U, Strogen B, Lobscheid AB, Masanet E, Santero NJ, Horvath A, McKone TE: Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production. / Environ Res Lett 2012, 7:014011. blank" title="It opens in new window">CrossRef <br> 19. Matthews RB, Grogan P: Potential C sequestration rates under short-rotation coppiced willow and miscanthus biomass crops: a modeling study. / Asp Appl Biol 2001, 65:303-12. <br> 20. Davis SC, Parton WJ, Grosso SJD, Keough C, Marx E, Adler PR, DeLucia EH: Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. / Front Ecol Environ 2012, 10:69-4. blank" title="It opens in new window">CrossRef <br> 21. Qin Z, Zhuang Q, Chen M: Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural yield in the conterminous United States. / GCB Bioenergy 2012, 4:277-88. blank" title="It opens in new window">CrossRef <br> 22. CARB: / Detailed California-modified GREET pathway for cellulosic ethanol from farmed trees by fermentation. Sacramento, CA: ; 2009. <br> 23. CARB: / Detailed California-modified GREET pathway for cellulosic ethanol from forest waste. Sacramento, CA: ; 2009. <br> 24. Taheripour F, Tyner WE, Wang MQ: / Global land use changes due to the U.S. cellulosic biofuel program simulated with the GTAP model. 2011. blication-luc_ethanol" class="a-plus-plus">http://greet.es.anl.gov/publication-luc_ethanol <br> 25. Kwon H-Y, Hudson RJM: Quantifying management-driven changes in organic matter turnover in an agricultural soil: An inverse modeling approach using historical data and a surrogate CENTURY-type model. / Soil Biol Biochem 2010, 42:2241-253. bio.2010.08.025" target="_blank" title="It opens in new window">CrossRef <br> 26. Kwon H-Y, Wander MM, Mueller S, Dunn JB: Modeling state-level soil carbon emissions factors under various scenarios for direct land use change associated with United States biofuel feedstock production. / Biomass Bioenerg 2013. <br> 27. Mueller S, Dunn JB, Wang MQ: / Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) users-manual and technical documentation. Argonne National Laboratory; 2012. ANL/ESD/12- blication-cclub-manual" class="a-plus-plus">http://greet.es.anl.gov/publication-cclub-manual blank" title="It opens in new window">CrossRef <br> 28. Argonne National LaboratoryGREET1_2012. http://greet.es.anl.gov/main <br> 29. Pflugmacher D, Cohen W, Kennedy R, Lefsky M: Regional applicability of forest height and aboveground biomass models for the geoscience laser altimeter system. / For Sci 2008, 54:647-57. <br> 30. Buis A: / Global map of forest height produced from NASA’s ICESAT/GLAS, MODIS and TRMM sensors. 2012. http://www.nasa.gov/topics/earth/features/forest20120217.html <br> 31. Wang Z, Dunn JB, Wang MQ: / GREET model miscanthus parameter development. Argonne National Laboratory. 2012. blication-micanthus-params" class="a-plus-plus">http://greet.es.anl.gov/publication-micanthus-params <br> 32. Dunn JB, Eason J, Wang MQ: / Updated sugarcane and switchgrass parameters in the GREET model. Argonne Mational Laboratory; 2011. blication-hjk5cxlv" class="a-plus-plus">http://greet.es.anl.gov/publication-hjk5cxlv <br> 33. U. S. Department of Energy: / U.S. billion-ton update: biomass supply for a bioenergy and bioproducts Industry. Oak Ridge National Laboratory; 2011. <br> 34. Heath LS, Birdsey RA, Row C, Plantinga AJ: / Carbon pools and flux in U.S. forest products. Berlin: Springer; 1996:271-78. [ / NATO ASI Series I: Global Environmental Change] <br> 35. ATLASS Consortium: / Assessing the land use change consequences of European biofuel policies. 2011. b/html/148289.htm" class="a-plus-plus">http://trade.ec.europa.eu/doclib/html/148289.htm <br> 36. Tyner WE, Taheripour F, Zhuang Q, Birur D, Baldos U: / Land use changes and consequent CO2 emissions due to US corn ethanol production. A comprehensive analysis. Purdue University: Department of Agricultural Economics; 2010. <br> 37. Georgescu M, Lobell DB, Field CB: Direct climate effects of perennial bioenergy crops in the United States. / Proc Natnl Acad Sci 2011, 108:4307-312. blank" title="It opens in new window">CrossRef <br> 38. Pielke RA, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N: Land use/land cover changes and climate: modeling analysis and observational evidence. / WIRE: Clim Chang 2011, 2:828-50. blank" title="It opens in new window">CrossRef <br> 39. Van Deusen PC, Heath LS: Weighted analysis methods for mapped plot forest inventory data: tables, regressions, maps and graphs. / For Ecol Manag 2010, 260:1607-612. blank" title="It opens in new window">CrossRef <br> 40. Han J, Elgowainy E, Palou-Rivera I, Dunn JB, Wang MQ: / Well-to-wheels analysis of fast pyrolysis pathways with GREET. Argonne National Laboratory; 2011. blication-wtw_fast_pyrolysis" class="a-plus-plus">http://greet.es.anl.gov/publication-wtw_fast_pyrolysis blank" title="It opens in new window">CrossRef <br>
  • 作者单位:Jennifer B Dunn (1) <br> Steffen Mueller (2) <br> Ho-young Kwon (3) <br> Michael Q Wang (1) <br><br>1. Systems Assessment Group, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA <br> 2. Energy Resources Center, University of Illinois at Chicago, 1309 South Halsted Street, MC 156, Chicago, IL, 60607, USA <br> 3. Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, W-503 Turner Hall, MC-047, 1102 South Goodwin Avenue, Urbana, IL, 61801, USA <br>
  • ISSN:1754-6834
文摘
Background The greenhouse gas (GHG) emissions that may accompany land-use change (LUC) from increased biofuel feedstock production are a source of debate in the discussion of drawbacks and advantages of biofuels. Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing the understanding of LUC GHG impacts associated with both corn and cellulosic ethanol will inform the on-going debate concerning their magnitudes and sources of variability. Results In our study, we estimate LUC GHG emissions for ethanol from four feedstocks: corn, corn stover, switchgrass, and miscanthus. We use new computable general equilibrium (CGE) results for worldwide LUC. U.S. domestic carbon emission factors are from state-level modelling with a surrogate CENTURY model and U.S. Forest Service data. This paper investigates the effect of several key domestic lands carbon content modelling parameters on LUC GHG emissions. International carbon emission factors are from the Woods Hole Research Center. LUC GHG emissions are calculated from these LUCs and carbon content data with Argonne National Laboratory’s Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) model. Our results indicate that miscanthus and corn ethanol have the lowest (?0?g CO2b>e/MJ) and highest (7.6?g CO2b>e/MJ) LUC GHG emissions under base case modelling assumptions. The results for corn ethanol are lower than corresponding results from previous studies. Switchgrass ethanol base case results (2.8?g CO2b>e/MJ) were the most influenced by assumptions regarding converted forestlands and the fate of carbon in harvested wood products. They are greater than miscanthus LUC GHG emissions because switchgrass is a lower-yielding crop. Finally, LUC GHG emissions for corn stover are essentially negligible and insensitive to changes in model assumptions. Conclusions This research provides new insight into the influence of key carbon content modelling variables on LUC GHG emissions associated with the four bioethanol pathways we examined. Our results indicate that LUC GHG emissions may have a smaller contribution to the overall biofuel life cycle than previously thought. Additionally, they highlight the need for future advances in LUC GHG emissions estimation including improvements to CGE models and aboveground and belowground carbon content data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700