Toll-like receptor polymorphisms in malaria-endemic populations
详细信息    查看全文
  • 作者:Jennifer A Greene (1)
    Ann M Moormann (1)
    John Vulule (2)
    Moses J Bockarie (3)
    Peter A Zimmerman (1)
    James W Kazura (1)
  • 刊名:Malaria Journal
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:8
  • 期:1
  • 全文大小:609KB
  • 参考文献:1. Newton CR, Hien TT, White N: Cerebral malaria. / J Neurol Neurosurg Psychiatry 2000, 69: 433鈥?41. dx.doi.org/10.1136/jnnp.69.4.433">CrossRef
    2. Haldane J: The Rate of Mutations of Human Genes. / Proceedings of the Eighth International Congress on Genetics Sweden: Hereditas 1949, 267鈥?73.
    3. Haldane J: Disease and evolution. / Ric Sci 1949, 19: 68鈥?6.
    4. Mockenhaupt FP, Cramer JP, Hamann L, Stegemann MS, Eckert J, Oh NR, Otchwemah RN, Dietz E, Ehrhardt S, Schroder NW, Bienzle U, Schumann RR: Toll-like receptor (TLR) polymorphisms in African children: Common TLR-4 variants predispose to severe malaria. / Proc Natl Acad Sci USA 2006, 103: 177鈥?82. dx.doi.org/10.1073/pnas.0506803102">CrossRef
    5. Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, Woods AS, Gowda DC: Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. / J Biol Chem 2005, 280: 8606鈥?616. dx.doi.org/10.1074/jbc.M413541200">CrossRef
    6. Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY, Frodsham AJ, Walley AJ, Kyrieleis O, Khan A, Aucan C, Segal S, Moore CE, Knox K, Campbell SJ, Lienhardt C, Scott A, Aaby P, Sow OY, Grignani RT, Sillah J, Sirugo G, Peshu N, Williams TN, Maitland K, Davies RJ, Kwiatkowski DP, Day NP, Yala D, Crook DW, Marsh K, Berkley JA, O'Neill LA, Hill AV: A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. / Nat Genet 2007, 39: 523鈥?28. dx.doi.org/10.1038/ng1976">CrossRef
    7. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A: The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. / Proc Natl Acad Sci USA 2000, 97: 13766鈥?3771. dx.doi.org/10.1073/pnas.250476497">CrossRef
    8. Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW, Carroll JD, Espevik T, Ingalls RR, Radolf JD, Golenbock DT: Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. / J Biol Chem 1999, 274: 33419鈥?3425. dx.doi.org/10.1074/jbc.274.47.33419">CrossRef
    9. Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M, Muhlradt PF, Akira S: Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. / J Immunol 2000, 164: 554鈥?57.
    10. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF: A family of human receptors structurally related to Drosophila Toll. / Proc Natl Acad Sci USA 1998, 95: 588鈥?93. dx.doi.org/10.1073/pnas.95.2.588">CrossRef
    11. Haehnel V, Schwarzfischer L, Fenton MJ, Rehli M: Transcriptional regulation of the human toll-like receptor 2 gene in monocytes and macrophages. / J Immunol 2002, 168: 5629鈥?637.
    12. Noguchi E, Nishimura F, Fukai H, Kim J, Ichikawa K, Shibasaki M, Arinami T: An association study of asthma and total serum immunoglobin E levels for Toll-like receptor polymorphisms in a Japanese population. / Clin Exp Allergy 2004, 34: 177鈥?83. dx.doi.org/10.1111/j.1365-2222.2004.01839.x">CrossRef
    13. Yim JJ, Lee HW, Lee HS, Kim YW, Han SK, Shim YS, Holland SM: The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. / Genes Immun 2006, 7: 150鈥?55. dx.doi.org/10.1038/sj.gene.6364274">CrossRef
    14. Boraska Jelavic T, Barisic M, Drmic Hofman I, Boraska V, Vrdoljak E, Peruzovic M, Hozo I, Puljiz Z, Terzic J: Microsatelite GT polymorphism in the toll-like receptor 2 is associated with colorectal cancer. / Clin Genet 2006, 70: 156鈥?60. dx.doi.org/10.1111/j.1399-0004.2006.00651.x">CrossRef
    15. Bochud PY, Hawn TR, Siddiqui MR, Saunderson P, Britton S, Abraham I, Argaw AT, Janer M, Zhao LP, Kaplan G, Aderem A: Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. / J Infect Dis 2008, 197: 253鈥?61. dx.doi.org/10.1086/524688">CrossRef
    16. Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, Coskun M, Cilli A, Yegin O: The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. / Eur Respir J 2004, 23: 219鈥?23. dx.doi.org/10.1183/09031936.03.00061703">CrossRef
    17. Schroder NW, Diterich I, Zinke A, Eckert J, Draing C, von Baehr V, Hassler D, Priem S, Hahn K, Michelsen KS, Hartung T, Burmester GR, Gobel UB, Hermann C, Schumann RR: Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. / J Immunol 2005, 175: 2534鈥?540.
    18. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F: Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. / J Biol Chem 1999, 274: 10689鈥?0692. dx.doi.org/10.1074/jbc.274.16.10689">CrossRef
    19. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S: Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. / J Immunol 1999, 162: 3749鈥?752.
    20. Rehli M, Poltorak A, Schwarzfischer L, Krause SW, Andreesen R, Beutler B: PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. / J Biol Chem 2000, 275: 9773鈥?781. dx.doi.org/10.1074/jbc.275.13.9773">CrossRef
    21. Ferwerda B, McCall MB, Alonso S, Giamarellos-Bourboulis EJ, Mouktaroudi M, Izagirre N, Syafruddin D, Kibiki G, Cristea T, Hijmans A, Hamann L, Israel S, ElGhazali G, Troye-Blomberg M, Kumpf O, Maiga B, Dolo A, Doumbo O, Hermsen CC, Stalenhoef AF, van Crevel R, Brunner HG, Oh DY, Schumann RR, de la Rua C, Sauerwein R, Kullberg BJ, Ven AJ, Meer JW, Netea MG: TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. / Proc Natl Acad Sci USA 2007, 104: 16645鈥?6650. dx.doi.org/10.1073/pnas.0704828104">CrossRef
    22. Misch EA, Hawn TR: Toll-like receptor polymorphisms and susceptibility to human disease. / Clin Sci (Lond) 2008, 114: 347鈥?60. dx.doi.org/10.1042/CS20070214">CrossRef
    23. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA: TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. / Nat Genet 2000, 25: 187鈥?91. dx.doi.org/10.1038/76048">CrossRef
    24. Erridge C, Stewart J, Poxton IR: Monocytes heterozygous for the Asp299Gly and Thr399Ile mutations in the Toll-like receptor 4 gene show no deficit in lipopolysaccharide signalling. / J Exp Med 2003, 197: 1787鈥?791. dx.doi.org/10.1084/jem.20022078">CrossRef
    25. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT: TLR9 signals after translocating from the ER to CpG DNA in the lysosome. / Nat Immunol 2004, 5: 190鈥?98. dx.doi.org/10.1038/ni1028">CrossRef
    26. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S: A Toll-like receptor recognizes bacterial DNA. / Nature 2000, 408: 740鈥?45. dx.doi.org/10.1038/35047123">CrossRef
    27. Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A, Halmen KA, Lamphier M, Olivier M, Bartholomeu DC, Gazzinelli RT, Golenbock DT: Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. / Proc Natl Acad Sci USA 2007, 104: 1919鈥?924. dx.doi.org/10.1073/pnas.0608745104">CrossRef
    28. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T, Akira S: Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. / J Exp Med 2005, 201: 19鈥?5. dx.doi.org/10.1084/jem.20041836">CrossRef
    29. Du X, Poltorak A, Wei Y, Beutler B: Three novel mammalian toll-like receptors: gene structure, expression, and evolution. / Eur Cytokine Netw 2000, 11: 362鈥?71.
    30. Lazarus R, Klimecki WT, Raby BA, Vercelli D, Palmer LJ, Kwiatkowski DJ, Silverman EK, Martinez F, Weiss ST: Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): frequencies, pairwise linkage disequilibrium, and haplotypes in three U.S. ethnic groups and exploratory case-control disease association studies. / Genomics 2003, 81: 85鈥?1. dx.doi.org/10.1016/S0888-7543(02)00022-8">CrossRef
    31. Torok HP, Glas J, Tonenchi L, Bruennler G, Folwaczny M, Folwaczny C: Crohn's disease is associated with a toll-like receptor-9 polymorphism. / Gastroenterology 2004, 127: 365鈥?66. dx.doi.org/10.1053/j.gastro.2004.05.051">CrossRef
    32. Novak N, Yu CF, Bussmann C, Maintz L, Peng WM, Hart J, Hagemann T, Diaz-Lacava A, Baurecht HJ, Klopp N, Wagenpfeil S, Behrendt H, Bieber T, Ring J, Illig T, Weidinger S: Putative association of a TLR9 promoter polymorphism with atopic eczema. / Allergy 2007, 62: 766鈥?72. dx.doi.org/10.1111/j.1398-9995.2007.01358.x">CrossRef
    33. Lachheb J, Dhifallah IB, Chelbi H, Hamzaoui K, Hamzaoui A: Toll-like receptors and CD14 genes polymorphisms and susceptibility to asthma in Tunisian children. / Tissue Antigens 2008, 71: 417鈥?25. dx.doi.org/10.1111/j.1399-0039.2008.01011.x">CrossRef
    34. Mockenhaupt FP, Hamann L, von Gaertner C, Bedu-Addo G, von Kleinsorgen C, Schumann RR, Bienzle U: Common polymorphisms of toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. / J Infect Dis 2006, 194: 184鈥?88. dx.doi.org/10.1086/505152">CrossRef
    35. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O'Neill LA: Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. / Nature 2001, 413: 78鈥?3. dx.doi.org/10.1038/35092578">CrossRef
    36. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T, Takeda K, Akira S: Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. / Nature 2002, 420: 324鈥?29. dx.doi.org/10.1038/nature01182">CrossRef
    37. Castiblanco J, Varela DC, Castano-Rodriguez N, Rojas-Villarraga A, Hincapie ME, Anaya JM: TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. / Infect Genet Evol 2008, 8: 541鈥?44. dx.doi.org/10.1016/j.meegid.2008.03.001">CrossRef
    38. Nejentsev S, Thye T, Szeszko JS, Stevens H, Balabanova Y, Chinbuah AM, Hibberd M, Vosse E, Alisjahbana B, van Crevel R, Ottenhoff TH, Png E, Drobniewski F, Todd JA, Seielstad M, Horstmann RD: Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. / Nat Genet 2008, 40: 261鈥?62. dx.doi.org/10.1038/ng0308-261">CrossRef
    39. Moormann AM, Embury PE, Opondo J, Sumba OP, Ouma JH, Kazura JW, John CC: Frequencies of sickle cell trait and glucose-6-phosphate dehydrogenase deficiency differ in highland and nearby lowland malaria-endemic areas of Kenya. / Trans R Soc Trop Med Hyg 2003, 97: 513鈥?14. dx.doi.org/10.1016/S0035-9203(03)80010-X">CrossRef
    40. Hay SI, Noor AM, Simba M, Busolo M, Guyatt HL, Ochola SA, Snow RW: Clinical epidemiology of malaria in the highlands of western Kenya. / Emerg Infect Dis 2002, 8: 543鈥?48. dx.doi.org/10.3201/eid0804.010529">CrossRef
    41. Malakooti MA, Biomndo K, Shanks GD: Reemergence of epidemic malaria in the highlands of western Kenya. / Emerg Infect Dis 1998, 4: 671鈥?76. dx.doi.org/10.3201/eid0404.980422">CrossRef
    42. John CC, Moormann AM, Sumba PO, Ofulla AV, Pregibon DC, Kazura JW: Gamma interferon responses to Plasmodium falciparum liver-stage antigen 1 and thrombospondin-related adhesive protein and their relationship to age, transmission intensity, and protection against malaria. / Infect Immun 2004, 72: 5135鈥?142. dx.doi.org/10.1128/IAI.72.9.5135-5142.2004">CrossRef
    43. Beier JC, Oster CN, Onyango FK, Bales JD, Sherwood JA, Perkins PV, Chumo DK, Koech DV, Whitmire RE, Roberts CR: Plasmodium falciparum incidence relative to entomologic inoculation rates at a site proposed for testing malaria vaccines in western Kenya. / Am J Trop Med Hyg 1994, 50: 529鈥?36.
    44. John CC, McHugh MM, Moormann AM, Sumba PO, Ofulla AV: Low prevalence of Plasmodium falciparum infection among asymptomatic individuals in a highland area of Kenya. / Trans R Soc Trop Med Hyg 2005, 99: 780鈥?86.
    45. Bockarie MJ, Alexander N, Bockarie F, Ibam E, Barnish G, Alpers M: The late biting habit of parous Anopheles mosquitoes and pre-bedtime exposure of humans to infective female mosquitoes. / Trans R Soc Trop Med Hyg 1996, 90: 23鈥?5. dx.doi.org/10.1016/S0035-9203(96)90465-4">CrossRef
    46. DaRe JT, Mehlotra RK, Michon P, Mueller I, Reeder J, Sharma YD, Stoneking M, Zimmerman PA: Microsatellite polymorphism within pfcrt provides evidence of continuing evolution of chloroquine-resistant alleles in Papua New Guinea. / Malar J 2007, 6: 34. dx.doi.org/10.1186/1475-2875-6-34">CrossRef
    47. Mehlotra RK, Ziats MN, Bockarie MJ, Zimmerman PA: Prevalence of CYP2B6 alleles in malaria-endemic populations of West Africa and Papua New Guinea. / Eur J Clin Pharmacol 2006, 62: 267鈥?75. dx.doi.org/10.1007/s00228-005-0092-9">CrossRef
    48. Shi YY, He L: SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. / Cell Res 2005, 15: 97鈥?8. dx.doi.org/10.1038/sj.cr.7290286">CrossRef
    49. Yim JJ, Ding L, Schaffer AA, Park GY, Shim YS, Holland SM: A microsatellite polymorphism in intron 2 of human Toll-like receptor 2 gene: functional implications and racial differences. / FEMS Immunol Med Microbiol 2004, 40: 163鈥?69. dx.doi.org/10.1016/S0928-8244(03)00342-0">CrossRef
    50. Hise AG, Hazlett FE, Bockarie MJ, Zimmerman PA, Tisch DJ, Kazura JW: Polymorphisms of innate immunity genes and susceptibility to lymphatic filariasis. / Genes Immun 2003, 4: 524鈥?27. dx.doi.org/10.1038/sj.gene.6364015">CrossRef
    51. Schroder NW, Hermann C, Hamann L, Gobel UB, Hartung T, Schumann RR: High frequency of polymorphism Arg753Gln of the Toll-like receptor-2 gene detected by a novel allele-specific PCR. / J Mol Med 2003, 81: 368鈥?72.
    52. Kwiatkowski DP: How malaria has affected the human genome and what human genetics can teach us about malaria. / Am J Hum Genet 2005, 77: 171鈥?92. dx.doi.org/10.1086/432519">CrossRef
    53. Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM: Common west African HLA antigens are associated with protection from severe malaria. / Nature 1991, 352: 595鈥?00. dx.doi.org/10.1038/352595a0">CrossRef
    54. Hill AV, Yates SN, Allsopp CE, Gupta S, Gilbert SC, Lalvani A, Aidoo M, Davenport M, Plebanski M: Human leukocyte antigens and natural selection by malaria. / Philos Trans R Soc Lond B Biol Sci 1994, 346: 379鈥?85. dx.doi.org/10.1098/rstb.1994.0155">CrossRef
    55. Tournamille C, Colin Y, Cartron JP, Le Van Kim C: Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. / Nat Genet 1995, 10: 224鈥?28. dx.doi.org/10.1038/ng0695-224">CrossRef
    56. He W, Neil S, Kulkarni H, Wright E, Agan BK, Marconi VC, Dolan MJ, Weiss RA, Ahuja SK: Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. / Cell Host Microbe 2008, 4: 52鈥?2. dx.doi.org/10.1016/j.chom.2008.06.002">CrossRef
    57. Johnson CM, Tapping RI: Microbial products stimulate human Toll-like receptor 2 expression through histone modification surrounding a proximal NF-kappaB-binding site. / J Biol Chem 2007, 282: 31197鈥?1205. dx.doi.org/10.1074/jbc.M705151200">CrossRef
    58. Walsh EC, Sabeti P, Hutcheson HB, Fry B, Schaffner SF, de Bakker PI, Varilly P, Palma AA, Roy J, Cooper R, Winkler C, Zeng Y, de The G, Lander ES, O'Brien S, Altshuler D: Searching for signals of evolutionary selection in 168 genes related to immune function. / Hum Genet 2006, 119: 92鈥?02. dx.doi.org/10.1007/s00439-005-0090-0">CrossRef
  • 作者单位:Jennifer A Greene (1)
    Ann M Moormann (1)
    John Vulule (2)
    Moses J Bockarie (3)
    Peter A Zimmerman (1)
    James W Kazura (1)

    1. Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
    2. Kenya Medical Research Institute, Kisumu, Kenya
    3. Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
文摘
Background Toll-like receptors (TLR) and related downstream signaling pathways of innate immunity have been implicated in the pathogenesis of Plasmodium falciparum malaria. Because of their potential role in malaria pathogenesis, polymorphisms in these genes may be under selective pressure in populations where this infectious disease is endemic. Methods A post-PCR Ligation Detection Reaction-Fluorescent Microsphere Assay (LDR-FMA) was developed to determine the frequencies of TLR2, TLR4, TLR9, MyD88-Adaptor Like Protein (MAL) single nucleotide polymorphisms (SNPs), and TLR2 length polymorphisms in 170 residents of two regions of Kenya where malaria transmission is stable and high (holoendemic) or episodic and low, 346 residents of a malaria holoendemic region of Papua New Guinea, and 261 residents of North America of self-identified ethnicity. Results The difference in historical malaria exposure between the two Kenyan sites has significantly increased the frequency of malaria protective alleles glucose-6-phoshpate dehydrogenase (G6PD) and Hemoglobin S (HbS) in the holoendemic site compared to the episodic transmission site. However, this study detected no such difference in the TLR2, TLR4, TLR9, and MAL allele frequencies between the two study sites. All polymorphisms were in Hardy Weinberg Equilibrium in the Kenyan and Papua New Guinean populations. TLR9 SNPs and length polymorphisms within the TLR2 5' untranslated region were the only mutant alleles present at a frequency greater than 10% in all populations. Conclusion Similar frequencies of TLR2, TLR4, TLR9, and MAL genetic polymorphisms in populations with different histories of malaria exposure suggest that these innate immune pathways have not been under strong selective pressure by malaria. Genotype frequencies are consistent with Hardy-Weinberg Equilibrium and the Neutral Theory, suggesting that genetic drift has influenced allele frequencies to a greater extent than selective pressure from malaria or any other infectious agents in these populations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700