Electrolytes for high-energy lithium batteries
详细信息    查看全文
  • 作者:Jennifer L. Schaefer (1)
    Yingying Lu (1)
    Surya S. Moganty (1)
    Praveen Agarwal (1)
    N. Jayaprakash (1)
    Lynden A. Archer (1) laa25@cornell.edu
  • 关键词:Electrolytes – ; Lithium ion battery – ; Ionic liquids – ; Nanoparticle organic hybrids – ; Lithium/air – ; Lithium dendrites
  • 刊名:Applied Nanoscience
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:2
  • 期:2
  • 页码:91-109
  • 全文大小:1.1 MB
  • 参考文献:1. Agarwal P, Qi H, Archer LA (2010) The ages in a self-suspended nanoparticle liquid. Nano Lett 10(1):111–115
    2. Agarwal P, Chopra M, Archer LA (2011) Nanoparticle netpoints for shape-memory polymers. Angew Chem Int Ed 50(37):8670–8673
    3. Appetecchi GB, Montanino M, Zane D, Carewska M, Alessandrini F, Passerini S (2009) Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidiumiun bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochim Acta 54(4):1325–1332
    4. Arai J (2003) Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries. J Electrochem Soc 150(2):A219–A228
    5. Armand MB, Chabagno JM, Duclot MJ (1979) In: Fast ion transport in solids: electrodes and electrolytes. Vashista P, Mundy JN, Shenoy GK (eds) North-Holland, New York, pp 131
    6. Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D (2007) Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sources 165(2):491–499
    7. Balakrishnan PG, Ramesh R, Kumar TP (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155(2):401–414
    8. Bayley PM, Lane GH, Rocher NM, Clare BR, Best AS, MacFarlane DF, Forsyth M (2009) Transport properties of ionic liquid electrolytes with organic diluents. Phys Chem Chem Phys 11(33):7202–7208
    9. Bennemann H, Brouers F, Quitmann D (1982) Ionic liquids, molten salts and polyelectrolytes. In: Proceedings of international conference on molten salts, Springer, New York
    10. Bhatt AI, Best AS, Huang J, Hollenkamp AF (2010) Application of the N-propyl-N-methyl-pyrrolodinium bis(fluorosulfonyl)imide RTIL containing lithium bis(fluorosulonyl)imide in ionic liquid based lithium batteries. J Electrochem Soc 157(1):A66–A74
    11. Bhattacharyya A, Dolle M, Maier J (2004) Improved battery electrolytes by heterogeneous doping of nonaqueous Li-salt solutions. Electrochem Solid State Lett 7(11):A432–A434
    12. Borgel V, Markevicha E, Aurbach D, Semrau G, Schmidt M (2009) On the application of ionic liquids for rechargeable Li batteries: High voltage systems. J Power Sources 189(1):331–336
    13. Borghini MC, Mastragostino M, Zanelli A (1996) Reliability of lithium batteries with crosslinked polymer electrolytes. Electrochim Acta 41(15):2369–2373
    14. Bruce PG (2008) Energy storage beyond the horizon: rechargeable lithium batteries. Solid State Ionics 179(21–26):752–760
    15. Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Inter Ed 47(16):2930–2946
    16. Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A (1999) Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics 118(1–2):73–79
    17. Chang DR, Lee SH, Kim SW, Kim HT (2002) Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1, 3-dioxolane for lithium–sulfur battery. J Power Sources 112(2):452–460
    18. Chen R, Wu F, Li L, Guan Y, Qiu X, Chen S, Li Y, Wu S (2007) Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries. J Power Sources 172(1):395–403
    19. Cheng H, Zhu C, Huang B, Lu M, Yang Y (2007) Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta 52(19):5789–5794
    20. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003a) Rechargeable lithium sulfur battery–I. Structural change of sulfur cathode during discharge and charge. J Electrochem Soc 150(6):A796–A799
    21. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003b) Rechargeable lithium sulfur battery–II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800–A805
    22. Choi N-S, Park J-K (2009) A comparative study of coordination between host polymer and Li(+) ions in UV-cured gel polymer electrolytes. Solid State Ionics 180(20–22):1204–1208
    23. Choi J-W, Kim J-K, Cheruvally G, Ahn J-H, Ahn H-J, Kim K-W (2007) Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim Acta 52(5):2075–2082
    24. Choi J-W, Cheruvally G, Kim D-S, Ahn J-H, Kim K-W, Ahn H-J (2008) Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive. J Power Sources 183(1):441–445
    25. Christie AM, Lilley SJ, Staunton E, Andreev YJ, Bruce PG (2005) Increasing the conductivity of crystalline polymer electrolytes. Nature 433(7021):50–53
    26. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692):456–458
    27. Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103(48):10632–10638
    28. Croce F, Sacchetti S, Scrosati B (2006) Advanced, high-performance composite polymer electrolytes for lithium batteries. J Power Sources 161(1):560–564
    29. Das S, Bhattacharyya A (2009) Oxide particle surface chemistry and ion transport in “soggy sand” electrolytes. J Phys Chem C 113(16):6699–6705
    30. Das S, Bhattacharyya A (2010) Influence of oxide particle network morphology on ion solvation and transport in “soggy sand” electrolytes. J Phys Chem B 114(20):6830–6835
    31. Davis JH (2004) Task-specific ionic liquids. Chem Lett 33(9):1072–1077
    32. Doyle M, Fuller TF, Newman J (1994) The importance of the lithium ion transference number in lithium polymer cells. Electrochim Acta 39(13):2073–2081
    33. Egashira M, Okada S, Yamaki J, Dri DA, Bonadies F, Scrosati B (2004) The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte. J Power Sources 138(1–2):240–244
    34. El Ouatani L, Dedryv猫re R, Siret C, Biensan P, Reynaud S, Irat莽abal P, Gonbeau D (2009) The effect of vinylene carbonate additive on surface film formation on both electrodes in Li-ion batteries. J Electrochem Soc 156(2):A103–A113
    35. Fei S-T, Allcock HR (2010) Methoxyethoxyethoxyphosphazenes as ionic conductive fire retardant additives for lithium battery systems. J Power Sources 195(7):2082–2088
    36. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14(11):589
    37. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195(15):4554–4569
    38. Fogeling J, Kunze M, Schonhoff M, Stolwijk NA (2010) Foreign-ion and self-ion diffusion in a crosslinked salt-in-polyether electrolyte. Phys Chem Chem Phys 12(26):7148–7161
    39. Fragiadakis D, Dou S, Colby RH, Runt J (2008) Molecular mobility, ion mobility, and mobile ion concentration in poly(ethylene oxide)-based polyurethane ionomers. Macromolecules 41(15):5723–5728
    40. Fragiadakis D, Dou S, Colby RH, Runt J (2009) Molecular mobility and Li(+) conduction in polyester copolymer ionomers based on poly(ethylene oxide). J Chem Phys 130(6):064907
    41. Fuller J, Breda AC, Carlin RT (1998) Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids. J Electroanal Chem 459(1):29–34
    42. Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412(6846):520–523
    43. Ghosh A, Kofinas P (2008) Nanostructured block copolymer dry electrolyte. J Electrochem Soc 155(6):A428–A431
    44. Ghosh A, Wang C, Kofinas P (2010) Block copolymer solid battery electrolyte with high Li-ion transference number. J Electrochem Soc 157(7):A846–A849
    45. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wicke W (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203
    46. Gomez ED, Panday A, Feng EH, Chen V, Stone GM, Minor A, Kisielowshi C, Downing KH, Borodin O, Smith GD, Balsara NP (2009) Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett 9(3):1212–1216
    47. Goodenough JB, Kim J (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603
    48. Hamlen R, Au G, Brundage M, Hendrickson M, Plichta E, Slane S, Barbarello J (2001) US Army portable power programs. J Power Sources 97–98(SI):22–24
    49. Hayamizu K, Aihara Y, Nakagawa H, Nukuda T, Price WS (2004) Ionic conduction and ion diffusion in binary room-temperature ionic liquids composed of [emim][BF4] and LiBF4. J Phys Chem B 108(50):19527–19532
    50. Herbert EG, Tenhaeff WE, Dudney NJ, Pharr GM (2011) Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films 520(1):413–418
    51. Howlett PC, MacFarlane DR, Hollenkamp AF (2004) High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochem Solid State Lett 7(5):A97–A101
    52. Howlett PC, Brack N, Hollenkamp AF, Forsyth M, MacFarlane DR (2006) Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl)amide room-temperature ionic liquids electrolytes. J Electrochem Soc 153(3):A595–A606
    53. Hussey CL (1983) Ionic liquids. Advances in Molten Salt Chemistry, vol 5, p 185
    54. Hyung YE, Vissers DR, Amine K (2003) Flame-retardant additives for lithium-ion batteries. J Power Sources 119(SI):383–387
    55. Itoh T, Yoshikawa M, Uno T, Kubo M (2009) Solid polymer electrolytes based on poly(lithium carboxylate) salts. Ionics 15(1):27–33
    56. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed 50(26):5904–5908
    57. Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander B-E (2002) Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)(9) LiTFSI polymer electrolyte system. Electrochim Acta 47(20):3257–3268
    58. Jeon J-D, Kim M-J, Kwak S-Y (2006) Effects of addition of TiO2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes. J Power Sources 162(2):1304–1311
    59. Jeyapandian M, Lavina S, Thayumanasundararam S, Ohno H, Negro E, Noto VD (2010) New hybrid inorganic–organic polymer electrolytes based on Zr(O(CH(2))(3)CH(3))(4), glycerol and EMIm-TFSI ionic liquid. J Power Sources 195(1):341–353
    60. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulfur batteries. Nat Mater 8(6):500–506
    61. Jin B, Kim J-U, Gu H-B (2003) Electrochemical properties of lithium–sulfur batteries. J Power Sources 117(1–2):148–152
    62. Jow TR, Xu K, Zhang SS, Ding MS (2005) Nonflammable non-aqueous electrolyte and non-aqueous electrolyte cells comprising the same. US Patent 6,924,061
    63. Kao H-M, Chen C-L (2004) An organic–inorganic hybrid electrolyte derived from self-assembly of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. Angew Chem Int Ed 43(8):980–984
    64. Kao H-M, Chao S-W, Chang P-C (2006) Multinuclear solid-state NMR, self-discussion coefficients, differential scanning calorimetry, and ionic conductivity of solid organic–inorganic hybrid electrolytes based on PPG-PEG-PPG diamine, siloxane, and lithium perchlorate. Macromolecules 39(3):1029–1040
    65. Katakabe T, Kawano R, Watanabe M (2007) Acceleration of redox diffusion and charge-transfer rates in an ionic liquid with nanoparticle addition. Electrochem Solid State Lett 10(6):F23–F25
    66. Kerr JB, Han YB, Liu G, Reeder C, Xie J, Sun X (2004) Interfacial behavior of polymer electrolytes. Electrochim Acta 50(2–3):235–242
    67. Klein RJ, Zhang S, Dou S, Jones BH, Colby RH, Runt J (2006) Modeling electrode polarization in dielectric spectroscopy: ion mobility and mobile ion concentration of single-ion polymer electrolytes. J Chem Phys 124(14):144903
    68. Kobayashi T, Yamada A, Kanno R (2008) Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim Acta 53(15):5045–5050
    69. Kotobuki M, Suzuki Y, Munakata H, Kanamura K, Sato Y, Yamamoto K, Yoshida T (2010a) Compatibility of LiCoO(2) and LiMn(2)O(4) cathode materials for Li(0.55)La(0.35)TiO(3) electrolyte to fabricate all-solid-state lithium battery. J Power Sources 195(17):5784–5788
    70. Kotobuki M, Munakata H, Kanamura K, Sato Y, Yoshida T (2010b) Compatibility of Li(7)La(3)Zr(2)O(12) solid electrolyte to all-solid-state battery using Li metal anode. J Electrochem Soc 157(10):A1076–A1079
    71. Kotobuki M, Suzuki Y, Munakata H, Kanamura K, Sato Y, Yamamoto K, Yoshida T (2010c) Fabrication of three-dimensional battery using ceramic electrolyte with honeycomb structure by sol–gel process. J Electrochem Soc 157(4):A493–A498
    72. Krawiec W, Scanlon LG, Fellner JP, Vaia RA, Vasudevan S, Giannelis EP (1995) Polymer nanocomposites—a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J Power Sources 54(2):310–315
    73. Lane GH, Best AS, MacFarlane DR, Hollenkamp AF, Forsyth M (2010) An azo-spiro mixed ionic liquid electrolyte for lithium metal-LiFePO(4) batteries. J Electrochem Soc 157(7):A876–A884
    74. Lee JS, Quan ND, Hwang JM, Bae JY, Kim H, Cho BW, Kim HS, Lee H (2006) Ionic liquids containing an ester group as potential electrolytes. Electrochem Commun 8(3):460–464
    75. Lee YM, Seo JE, Lee YG, Lee SH, Cho KY, Parka J-K (2007) Effects of triacetoxyvinylsilane as SEI layer additive on electrochemical performance of lithium metal secondary battery. Electrochem Solid State Lett 10(9):A216–A219
    76. Lewandowski A, Swiderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194(2):601–609
    77. Lewandowski A, Swiderska-Mocek A (2010) Lithium-metal potential in Li(+) containing ionic liquids. J Appl Electrochem 40(3):515–524
    78. Liao K-S, Sutto TE, Andreoli E, Ajayan P, McGrady KA, Curran SA (2010) Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources. J Power Sources 195(3):867–871
    79. Liu H, Liu Y, Li J (2010) Ionics liquids in surface electrochemistry. Phys Chem Chem Phys 12(8):1685–1697
    80. Luo J-Y, Cui W-J, He P, Xia Y–Y (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2(9):760–765
    81. Mandal BK, Padhi AK, Shi Z, Chakraborty S, Filler R (2006) Thermal runaway inhibitors for lithium battery electrolytes. J Power Sources 161(2):1341–1345
    82. Martha SK, Markevich E, Burgel V, Salitra G, Zinigrad E, Markovsky B, Sclar H, Pramovich Z, Heik O, Aurbach D, Exnar I, Buqa H, Drezen T, Semrau G, Schmidt M, Kovacheva D, Salyski N (2009) A short review on surface chemical aspects of Li batteries: a key for good performance. J Power Sources 189(1):288–296
    83. Matoba Y, Ikeda Y, Kohjiya S (2002) Ionic conductivity and mechanical properties of polymer networks prepared from high molecular weight branched poly(oxyethylene)s. Solid State Ionics 147(3–4):403–409
    84. Mazor H, Golodnitsky D, Peled E, Wieczorek W, Scrosati B (2008) Search for a single-ion-conducting polymer electrolyte: combined effect of anion trap and inorganic filler. J Power Sources 178(2):736–743
    85. Mei A, Jiang Q-H, Lin Y-H, Nan C-W (2009) Lithium lanthanum titanium oxide solid-state electrolyte by spark plasma sintering. J Alloys Compounds 486(1–2):871–875
    86. Menkin S, Golodnitsky D, Peled E (2009) Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications. Electrochem Commun 11(9):1789–1791
    87. Mikhaylik YV, Akridge JR (2003) Low temperature performance of Li/S batteries. J Electrochem Soc 150(3):A306–A311
    88. Miller TJ (2009) Electrical Energy Storage for Vehicles: Targets and Metrics, Ford Motor Company
    89. Moganty SS, Baltus RE, Roy D (2009) Electrochemical windows and impedance characteristics of [Bmim(+)][BF(4)(−)] and [Bdmim(+)][BF(4)(−)] ionic liquids at the surfaces of Au, Pt, Ta and glassy carbon electrodes. Chem Phys Lett 483(1–3):90
    90. Moganty SS, Jayaprakash N, Nugent JL, Shen J, Archer LA (2010) Ionic-liquid-tethered nanoparticles: hybrid electrolytes. Angew Chem Int Ed 49(48):9158–9161
    91. Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396–A404
    92. Morita M, Niida Y, Yoshimoto N, Adachi K (2005) Polymeric gel electrolyte containing alkyl phosphate for lithium-ion batteries. J Power Sources 146(1–2):427–430
    93. Nakagawa H, Izuchi S, Kuwana K, Nukuda T, Aihara Y (2003) Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. J Electrochem Soc 150(6):A695–A700
    94. Niitani T, Amaike M, Nakano H, Dokko K, Kanamura K (2009) Star-shaped polymer electrolyte with microphase separation structure for all-solid-state lithium batteries. J Electrochem Soc 156(7):A577–A583
    95. Nugent JL, Moganty SS, Archer LA (2010) Nanoscale organic hybrid electrolytes. Adv Mater 22(33):3677
    96. Oesten R, Heider U, Schmidt M (2002) Advanced electrolytes. Solid State Ionics 148(3–4):391–397
    97. Ohno H (2005) Electrochemical aspects of ionic liquids. John Wiley & Sons, Inc., New Jersey
    98. Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T (2006) Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 18(17):2226
    99. Panero S, Scrosati B, Sumathipala HH, Wieczorek W (2007) Dual-composite polymer electrolytes with enhanced transport properties. J Power Sources 167(2):510–514
    100. Park G, Nakamura H, Lee Y, Yoshio M (2009) The important role of additives for improved lithium ion battery safety. J Power Sources 189(1):602–606
    101. Patil A, Patil V, Shin DW, Choi J-W, Paik D-S, Yoon S-J (2008) Issues and challenges facing rechargeable thin film lithium batteries. Mater Res Bull 43(8–9):1913–1942
    102. Piszcz M, Marzantowicz M, Plewa-Marczewska A, Zukowska GZ, Zalewska A, Pietrzykowski A, Siekierski M (2010) Hybrid polymeric electrolyte based on methylalumoxane. J Power Sources 195(22):7495–7505
    103. Popall M, Andrei M, Kappel J, Kron J, Olma K, Olsowski B (1998) ORMOCERS as inorganic–organic electrolytes for new solid state lithium batteries and supercapacitors. Electrochim Acta 43(10–11):1155–1161
    104. Raghaven P, Choi JW, Ahn JH, Cheruvally G, Chauhan GS, Ahn HJ, Nah C (2008) Novel electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries. J Power Sources 184(2):437–443
    105. Reddy MJ, Chu PP, Kumar JS, Rao UVS (2006) Inhibited crystallization and its effect on conductivity in a nano-sized Fe oxide composite PEO solid electrolyte. J Power Sources 161(1):535–540
    106. Rosso M, Gobron T, Brissot C, Chazalviel J-N, Lascaud S (2001) Onset of dendritic growth in lithium/polymer cells. J Power Sources 97–98(SI):804–806
    107. Rupp B, Schmuck M, Balducci A, Winter M, Kern W (2008) Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid. Eur Polym J 44(9):2986–2990
    108. Ryu HS, Ahn HJ, Kim KW, Ahn JH, Lee JY, Cairns EJ (2005) Self-discharge of lithium–sulfur cells using stainless-steel current-collectors. J Power Sources 140(2):365–369
    109. Ryu HS, Ahn HJ, Kim KW, Ahn JH, Cho KK, Nam TH, Kim JU, Cho GB (2006a) Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J Power Sources 163(1):201–206
    110. Ryu HS, Ahn HJ, Kim KW, Ahn JH, Lee JY (2006b) Discharge process of Li/PVdF/S cells at room temperature. J Power Sources 153(2):360–364
    111. Sakuda A, Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2008) Improvement of high-rate performance of all-solid-state lithium secondary batteries using Li-CoO(2) coated with Li(2))-SiO(2) glasses. Electrochem Solid State Lett 11(1):A1–A3
    112. Schaefer JL, Moganty SS, Yanga DA, Archer LA (2011) Nanoporous hybrid electrolytes. J Mat Chem 21(27):10094–10101
    113. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J. Power Sources 195(9):2419–2430
    114. Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Kihira N, Watanabe M, Terada N (2006) Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J Phys Chem B 110(21):10228–10230
    115. Seki S, Mita Y, Tokuda H, Ohno Y, Kobayashi Y, Usami A, Watanabe M, Terada N, Miyashiro N (2007) Effects of alkyl chain in imidazolium-type room-temperature ionic liquids as lithium secondary battery electrolytes. Electrochem Solid State Lett 10(10):A237–A240
    116. Shigematsu Y, Ue M, Yamaki J-i (2009) Thermal behavior of charged graphite and Li(x)CoO(2) in electrolytes containing alkyl phosphate for lithium-ion cells. J Electrochem Soc 156(3):A176–A180
    117. Shim EG, Nam TH, Kim JG, Kim HS, Moon SI (2009) Effects of trioctyl phosphate and cresyl diphenyl phosphate as flame-retarding additives for Li-ion battery electrolytes. Met Mater Int 15(4):615–621
    118. Shin JH, Cairns EJ (2008) N-methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte. J Power Sources 177(2):537–545
    119. Singh M, Odusanya O, Wilmes GM, Eitouni HB, Gomez ED, Patel AJ, Chen VL, Park MJ, Fragouli P, Iatrou H, Hadjichristidis N, Cookson D, Balsara NP (2007) Effect of molecular weight on the mechanical and electrical properties of bock copolymer electrolytes. Macromolecules 40(13):4578–4585
    120. Song S-W, Baek S-W (2009) Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries. Electrochem Solid State Lett 12(2):A23–A27
    121. Syzdek J, Armand M, Gizowska M, Marcinek M, Sasim E, Szafran M, Wieczorek W (2009) Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes—a novel approach. J Power Sources 194(1):66–72
    122. Takahara H, Tabuchi M, Takeuchi T, Kageyama H, Ide J, Handa K, Kobayashi Y, Kurisu Y, Kondo S, Kanno R (2004) Application of lithium metal electrolytes to all-solid-state lithium secondary batteries using Li3PO4-Li2S-SiS2 glass. J Electrochem Soc 151(9):A1309–A1313
    123. Tarascon J-M, Gozdz AS, Schmutz C, Shokoohi F, Warren PC (1996) Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ionics 86(8):49–54
    124. Tenhaeff W, Yu X, Hong K, Perry KA, Dudney NJ (2011) Ionic transport across interfaces of solid glass and polymer electrolytes for lithium ion batteries. J Electrochem Soc 158(10):A1143–A1149
    125. Terada Y, Yasaka K, Nishikawa F, Konishi T, Yoshio M, Nakai I (2001) In situ XAFS analysis of Li(Mn, M)(2)O-4 (M = Cr, Co, Ni) 5 V cathode materials for lithium-ion secondary batteries. J Solid State Chem 156(2):286–291
    126. Todorov YR, Hideshima Y, Noguchi H, Yoshio M (1999) Determination of theoretical capacity of metal-ion doped LiMn2O4 as the positive electrode in Li-ion batteries. J Power Sources 77(2):198–201
    127. Tokuda H, Hayamizu K, Ishii K, Abu Bin Hasan Susan M, Watanabe M (2004) Physiochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108(42):16593–16600
    128. Tsuda T, Kondo K, Tomioka T, Takahashi Y, Matsumoto H, Kuwabata S, Hussey CL (2011) Angew Chem Int Ed 50(6):1310–1313
    129. Uchiyama R, Kusagawa K, Hanai K, Imanishi N, Hirano A, Takeda Y (2009) Development of dry polymer electrolytes based on polyethylene oxide with co-bridging agent crosslinked by electron beam. Solid State Ionics 180(2–3):205–211
    130. Valencia H, Kohyama M, Tanaka S, Matsumoto H (2002) Ab initio study of EMIM-BF(4) crystal interaction with a Li (100) surface as a model for ionic liquid/Li interfaces in Li-ion batteries. J Chem Phys 131(24):244705
    131. Verma P, Maire P, Novak P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341
    132. Walden P (1914) Bull Acad Imper Sci (St. Petersburg) 1800
    133. Walls HJ, Riley MW, Singhal RR, Spontak RJ, Fedkiw PS, Khan SA (2003) Nanocomposite electrolyte with fumed silica and hectorite clay networks: passive versus active fillers. Adv Funct Mater 13(9):710–717
    134. Wang Y, Zhou H (2010) A lithium–air battery with a potential to continuously reduce O(2) from air for delivering energy. J Power Sources 195(1):358–361
    135. Wang X, Yasukawa E, Kasuya S (2001) Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries—I. Fundamental properties. J Electrochem Soc 148(10):A1058–A1065
    136. Wang J, Liu L, Ling Z, Yang J, Wan C, Jiang C (2003) Polymer lithium cells with sulfur composites as cathode materials. Electrochim Acta 48(13):1861–1867
    137. Wang J, Wang Y, He X, Ren J, Jiang C, Wan C (2004a) Electrochemical characteristics of sulfur composite cathode materials in rechargeable lithium batteries. J Power Sources 138(1–2):271–273
    138. Wang P, Zakeeruddin SM, Comte P, Exnar I, Gratzel M (2004b) Ionic liquid-based electrolytes with silica nanopoarticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc 125(5):1166–1167
    139. Wang WK, Wang Y, Huang YQ, Huang CJ, Yu ZB, Zhang H, Wang AB, Yuan KG (2010a) The electrochemical performance of lithium–sulfur batteries with LiClO(4) DOL/DME electrolyte. J Appl Electrochem 40(2):321–325
    140. Wang W, Liu W, Tudryn GJ, Colby RH, Winey KI (2010b) Multi-length scale morphology of poly(ethylene oxide)-based sulfonate ionomers with alkali cations at room temperature. Macromolecules 43(9):4223–4229
    141. Wasserschied P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, Weinhiem
    142. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2083
    143. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolim based ionic liquids. J Chem Soc Chem Commun 13:965–967
    144. Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Zhao XB, Cao GS (2010) Electrochemical performance of all-solid-state Li batteries based LiMn(0.5)Ni(0.5)O(2) cathode and NASICON-type electrolyte. J Power Sources 195(24):8341–8346
    145. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417
    146. Xu MQ, Li WS, Zuo XX, Liu JS, Xu X (2007) Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive. J Power Sources 174(2):705–710
    147. Xu F, Dudney NJ, Veith GM, Kim Y (2010) Properties of lithium phosphorus oxynitride (Lipon) for 3D solid-state lithium batteries. J Mater Res 25(8):1507–1515
    148. Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E (1988) Lithium sulfur battery—oxidation reduction mechanisms of polysulfides in THF solutions. J Electrochem Soc 135(5):1045–1048
    149. Yao W, Zhang Z, Gao J, Li J, Xu J, Wang Z, Yang Y (2009) Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries. Energy Environ Sci 2(10):1102–1108
    150. Yoshio M, Brodd RJ, Kozawa A (eds) (2009) Lithium-ion batteries: science & technologies. Springer, Berlin
    151. Yu X, Bates JB, Jellison GE Jr, Hart FX (1997) A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 144(2):524–532
    152. Zhang SS (2006) A review on electrolyte additive for lithium-ion batteries. J Power Sources 162(2):1379–1394
    153. Zhang HP, Xia Q, Wang B, Yang LC, Wu YP, Sun DL, Gan CL, Luo HJ, Bebeda AW, van Ree T (2009) Vinyl-tris-(methoxydiethoxy)silane as an effective and ecofriendly flame retardant for electrolytes in lithium ion batteries. Electrochem Commun 11(3):526–529
    154. Zhao Y, Van der Noot T (1997) Electrodeposition of aluminum from nonaqueous organic electrolytes systems and room temperature molten salts. Electrochim Acta 42(1):3–13
    155. Zhou DY, Li WS, Tan CL, Zuo XX, Huang HJ (2008) Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries. J Power Sources 184(2):589–592
    156. Zhou H, Wang Y, Li H, He P (2010) The development of a new type of rechargeable batteries based on hybrid electrolytes. Chem Sus Chem 3(9):1009–1019
  • 作者单位:1. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853-5201, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science
    Nanotechnology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:2190-5517
文摘
From aqueous liquid electrolytes for lithium–air cells to ionic liquid electrolytes that permit continuous, high-rate cycling of secondary batteries comprising metallic lithium anodes, we show that many of the key impediments to progress in developing next-generation batteries with high specific energies can be overcome with cleaver designs of the electrolyte. When these designs are coupled with as cleverly engineered electrode configurations that control chemical interactions between the electrolyte and electrode or by simple additives-based schemes for manipulating physical contact between the electrolyte and electrode, we further show that rechargeable battery configurations can be facilely designed to achieve desirable safety, energy density and cycling performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700