Nanoplasmonic biopatch for in vivo surface enhanced raman spectroscopy
详细信息    查看全文
  • 作者:Sang-Gil Park (1)
    Myeong-Su Ahn (1)
    Young-Jae Oh (1)
    Minseok Kang (1)
    Yong Jeong (1)
    Ki-Hun Jeong (1)

    1. Department of Bio and Brain Engineering and KAIST Institute for Optical Science and Technology
    ; Korea Advanced Institute of Science and Technology (KAIST) ; 291 Daehak-ro ; Yuseong-gu ; Daejeon ; 305-701 ; Korea
  • 关键词:Plasmonic nanoparticles ; In vivo SERS ; Neurotransmitter ; Agarose gel ; Beta ; amyloid
  • 刊名:BioChip Journal
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:8
  • 期:4
  • 页码:289-294
  • 全文大小:416 KB
  • 参考文献:1. Hudson, S.D. & Chumanov, G. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). / Anal. Bioanal. Chem. 394, 679鈥?6 (2009). CrossRef
    2. Moskovits, M. Surface-enhanced Raman spectroscopy: a brief perspective. / Top. Appl. Phys. 103, 1鈥? (2006). CrossRef
    3. Kang, M. / et al. A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering. / Adv. Mater. 26, 4510鈥?14 (2014). CrossRef
    4. Chaney, S.B., Shanmukh, S., Dluhy, R.A. & Zhao, Y.P. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. / Appl. Phys. Lett. 87, 031908 (2005).
    5. Li, K.B., Clime, L.V., Cui, B. & Veres, T. Surface enhanced Raman scattering on long-range ordered noblemetal nanocrescent arrays. / Nanotechnology 19, 145305 (2008).
    6. Chandran, S.P. / et al. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. / Biotechnol. Progr. 22, 577鈥?3 (2006). CrossRef
    7. Xie, J.P., Zhang, Q.B., Lee, J.Y. & Wang, D.I.C. The synthesis of SERS-active gold nanoflower tags for in vivo applications. / Acs. Nano. 2, 2473鈥?80 (2008). CrossRef
    8. Camargo, P.H.C., Rycenga, M., Au, L. & Xia, Y.N. Isolating and probing the hot spot formed between two silver nanocubes. / Angew. Chem. Int. Edit. 48, 2180鈥?84 (2009). CrossRef
    9. Zhang, T.R. / et al. Kinetically probing site-specific heterogeneous nucleation and hierarchical growth of nanobranches. / J. Phys. Chem. / C 111, 13691鈥?695 (2007).
    10. Lin, T.H. / et al. Electrochemical SERS at periodic metallic nanopyramid arrays. / J. Phys. Chem. C 113, 1367鈥?72 (2009). CrossRef
    11. Oh, Y.J. / et al. Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance. / Small 7, 184鈥?8 (2011). CrossRef
    12. Oh, Y.J. & Jeong, K.H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. / Adv. Mater. 24, 2234鈥?37 (2012). CrossRef
    13. Oh, Y.J. & Jeong, K.H. Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels. / Lab Chip 14, 865鈥?8 (2014). CrossRef
    14. Krishnan, J.N. / et al. Electroless deposition of SERS active Au-nanostructures on variety of metallic substrates. / BioChip J. 7, 375鈥?5 (2013). CrossRef
    15. Lee, W., Lee, S.Y., Briber, R.M. & Rabin, O. Selfassembled SERS substrates with tunable surface plasmon resonances. / Adv. Funct. Mater. 21, 3424鈥?29 (2011). CrossRef
    16. Park, M., Chang, H., Jeong, D.H. & Hyun, J. Spatial deformation of nanocellulose hydrogel enhances SERS. / BioChip J. 7, 234鈥?1 (2013). CrossRef
    17. Das, G. / et al. Nano-patterned SERS substrate: Application for protein analysis vs. temperature. / Biosens. Bioelectron. 24, 1693鈥?99 (2009). CrossRef
    18. Kwon, M.J., Lee, J., Wark, A.W. & Lee, H.J. Nanoparticle鈥揺nhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes. / Anal. Chem. 84, 1702鈥?07 (2012). CrossRef
    19. Liu, H.W. / et al. Single molecule detection from a largescale SERS-active Au79Ag21 substrate. / Sci. Rep-Uk. 1, 112 (2011).
    20. Li, L., Hutter, T., Steiner, U. & Mahajan, S. Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. / Analyst 138, 4574鈥?78 (2013). CrossRef
    21. Drachev, V.P. / et al. Adaptive silver films for surfaceenhanced Raman spectroscopy of biomolecules. / J. Raman Spectrosc. 36, 648鈥?6 (2005). CrossRef
    22. Kumar, G.V.P. / et al. Hot spots in ag core-au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. / J. Phys. Chem. C 111, 4388鈥?92 (2007).
    23. Dijkstra, R.J. / et al. Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy. / J. Neurosci. Meth. 159, 43鈥? (2007). CrossRef
    24. Kayat, M. & Volkan, M. New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid. / Anal. Chem. 84, 7729鈥?35 (2012). CrossRef
    25. Stuart, D.A. / et al. In vivo glucose measurement by surface- enhanced Raman spectroscopy. Anal. Chem. 78, 7211鈥?15 (2006).
    26. Ma, K. / et al. In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. / Anal. Chem. 83, 9146鈥?52 (2011). CrossRef
    27. Qian, X.M. / et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. / Nat. Biotechnol. 26, 83鈥? (2008). CrossRef
    28. Maiti, K.K. / et al. Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. / Biosens. Bioelectron. 26, 398鈥?3 (2010). CrossRef
    29. Samanta, A. / et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. / Angew. Chem. Int. Edit. 50, 6089鈥?92 (2011). CrossRef
    30. McQueenie, R. / et al. Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. / Anal. Chem. 84, 5968鈥?75 (2012). CrossRef
    31. Zavaleta, C.L. / et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. / Proc. Natl. Acad. Sci. U.S.A. 106, 13511鈥?516 (2009). CrossRef
    32. Jensen, L. & Schatz, G.C. Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. / J. Phys. Chem. A 110, 5973鈥?77 (2006). CrossRef
    33. Chou, I.H. / et al. Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy. / Nano. Lett. 8, 1729鈥?35 (2008). CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean BioChip Society, in co-publication with Springer Verlag GmbH
  • ISSN:2092-7843
文摘
Surfaced enhanced Raman scattering (SERS) has been extensively exploited for label-free and non-destructive biochemical detections. Recently diverse SERS substrates have been reported to improve sensitivity of SERS. However, the current platforms still have technical limitation for in vivo applications. Here, we report a nanoplasmonic biopatch of plasmonic nanoparticles physically embedded in highly biocompatible and Raman inactive agarose hydrogel. Molecular diffusion of small molecules such as neurotransmitter through nanoplasmonic biopatch was quantitatively visualized without labeling by using real-time microscopic SERS. In particular, the nano/micro porous structures within agarose hydrogel allow the SERS detection of macromolecules such as amyloid fibrils. This soft SERS platform opens up new opportunities for in vivo SERS applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700