KinImmerse: Macromolecular VR for NMR ensembles
详细信息    查看全文
  • 作者:Jeremy N Block (1)
    David J Zielinski (2) (3)
    Vincent B Chen (1)
    Ian W Davis (1) (4)
    E Claire Vinson (3)
    Rachael Brady (2) (3)
    Jane S Richardson (1)
    David C Richardson (1)
  • 刊名:Source Code for Biology and Medicine
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:4
  • 期:1
  • 全文大小:1625KB
  • 参考文献:1. Richardson DC, Richardson JS: Teaching molecular 3-D literacy. / Biochem Molec Biol Educ 2002, 30:21-6. dx.doi.org/10.1002/bmb.2002.494030010005">CrossRef
    2. Katz L, Levinthal C: Interactive computer graphics and representation of complex biological structures. / Ann Rev Biophys Bioengin 1972, 1:465-04. dx.doi.org/10.1146/annurev.bb.01.060172.002341">CrossRef
    3. Porter TK: Spherical shading. / Computer Graphics 1978, 12:282-85. dx.doi.org/10.1145/965139.639789">CrossRef
    4. Britton EG, Lipscomb JL, Pique ME: Making nested rotations convenient for the user. / Computer Graphics 1978, 12:222-27. dx.doi.org/10.1145/965139.807394">CrossRef
    5. Jones TA: A graphics model building and refinement system for macromolecules. / J Applied Crystallogr 1978, 11:268-72. dx.doi.org/10.1107/S0021889878013308">CrossRef
    6. Connolly ML: Solvent-accessible surfaces of proteins and nucleic acids. / Science 1993,221(4612):709-13. dx.doi.org/10.1126/science.6879170">CrossRef
    7. Richardson JS: The Anatomy and Taxonomy of Protein Structure. [duke.edu/teaching/anatax/" class="a-plus-plus">http://kinemage.biochem.duke.edu/teaching/anatax/] / Adv Prot Chem 1981, 34:167-39. dx.doi.org/10.1016/S0065-3233(08)60520-3">CrossRef
    8. Carson WM, Bugg CE: Algorithm for ribbon models of proteins. / J Molec Graphics 1986, 4:121-22. dx.doi.org/10.1016/0263-7855(86)80010-8">CrossRef
    9. Richardson DC, Richardson JS: The kinemage: a tool for scientific illustration. / Protein Science 1992, 1:3-. dx.doi.org/10.1002/pro.5560010102">CrossRef
    10. Sayle R, Milner-White EJ: RASMOL: Biomolecular graphics for all. / Trends Biochem Sci 1995,20(9):374. dx.doi.org/10.1016/S0968-0004(00)89080-5">CrossRef
    11. DeLano WL: / The PyMOL molecular graphics system. DeLano Scientific, Palo Alto, CA, USA; 2002.
    12. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. / Electrophoresis 1997, 18:2714-723. dx.doi.org/10.1002/elps.1150181505">CrossRef
    13. Lovell SC, Davis IW, Arendall WB III, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC: Structure validation by Cα geometry: φ, ψ anddeviation. / Proteins 2003,50(3):437-50. dx.doi.org/10.1002/prot.10286">CrossRef
    14. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera - A visualization system for exploratory research and analysis. / J Comput Chem 2004, 25:1605-612. dx.doi.org/10.1002/jcc.20084">CrossRef
    15. Koradi R, Billeter M, Wüthrich K: MOLMOL: a program for display and analysis of macromolecular structures. / J Mol Graphics 1996,14(1):51-5. dx.doi.org/10.1016/0263-7855(96)00009-4">CrossRef
    16. Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. / Acta Crystallogr 2004,60(Pt 12 Pt 1):2126-132.
    17. Humphrey W, Dalke A, Schulten K: VMD - visual molecular dynamics. / J Molec Graphics 1996, 14:33-8. dx.doi.org/10.1016/0263-7855(96)00018-5">CrossRef
    18. Sherman WR, Craig AB: / Understanding Virtual Reality: Interface, Application, and Design. San Francisco: Morgan Kauffmann; 2002.
    19. Arthur K, Preston T, Taylor RM II, Brooks FP Jr, Whitton MC, Wright WV: The PIT: Design, Implementation, and Next Steps. In / Proceedings of the 2nd International Immersive Projection Technology Workshop. Ames, Iowa; 1998.
    20. Surles MC, Richardson JS, Richardson DC, Brooks FP Jr: Sculpting proteins interactively: Continual energy minimization embedded in a graphical modeling system. / Protein Sci 1994, 3:198-10. dx.doi.org/10.1002/pro.5560030205">CrossRef
    21. Taylor RM II, Robinett W, Chi VL, Brooks FP Jr, Wright WV, Williams RS, Snyder EJ: The Nanomanipulator: A Virtual-Reality Interface for a Scanning Tunneling Microscope. / ACM SIGGRAPH Proc 1993, 93:127-4.
    22. Fisher J, Cummings J, Desai KV, Vicci L, Wilde B, Keller K, Weigle C, Bishop G, Taylor RM II, Davis CW, Boucher R, O'Brien ET, Superfine R: Three-dimensional force microscope: A nanometric optical tracking and magnetic manipulation system for the biomedical sciences. / Rev Scientific Instruments 2005, 76:53711-2. dx.doi.org/10.1063/1.1914777">CrossRef
    23. Brady R, Pixton J, Baxter G, Moran P, Potter CS, Carragher B, Belmont A: Crumbs: A virtual tracking tool for biological imaging. In / Proceedings of the 1995 Biomedical Visualization Conference. Washington DC: IEEE Computer Society; 1995:18. dx.doi.org/10.1109/BIOVIS.1995.528701">CrossRef
    24. Cruz-Neira C, Sandin D, DeFanti T: Surround-screen projection-based virtual reality: The design and implementation of the CAVE. / ACM SIGGRAPH Proc 1993, 93:135-42.
    25. Sherman W: FreeVR Home Page. [http://www.freevr.org]
    26. Stone J: VMD Publications. [du/Research/vmd/publications/cave2001.pdf" class="a-plus-plus">http://www.ks.uiuc.edu/Research/vmd/publications/cave2001.pdf]
    27. Ferey N, Delalande O, Grasseau G, Baaden M: A VR framework for interacting with molecular simulations. In / Proceedings of the ACM Symposium on Virtual Reality Software & Technology. Bordeaux, France. VRST; 2008:91-4.
    28. Moritz E, Meyer J: Interactive protein structure visualization using virtual reality. / Proceedings of the 4th IEEE Symposium on Bioinformatics and Bioengineering 2004, 503-07. dx.doi.org/10.1109/BIBE.2004.1317384">CrossRef
    29. PDB and CalIT2: PDB in a CAVE: Virtual reality environment highlights PDB structures. / PDB Newsletter spring 2006, 29:1.
    30. Jean Goldwurm 3D Visualization Theater [dtheater/index.html" class="a-plus-plus">http://www.weizmann.ac.il/ISPC/3dtheater/index.html]
    31. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. / Nucleic Acids Res 2000, 28:235-42. dx.doi.org/10.1093/nar/28.1.235">CrossRef
    32. Cavanagh J, Fairbrother WJ, Palmer AG III, Rance M, Skelton NJ: / Protein NMR Spectroscopy: Principles and Practice. 2nd edition. San Diego: Academic Press; 2006.
    33. Word JM, Lovell SC, LaBean TH, Zalis ME, Presley BK, Richardson JS, Richardson DC: Visualizing and Quantitating Molecular Goodness-of-Fit: Small-probe Contact Dots with Explicit Hydrogen Atoms. / J Mol Biol 1999, 285:1711-733. dx.doi.org/10.1006/jmbi.1998.2400">CrossRef
    34. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB III, Snoeyink J, Richardson JS, Richardson DC: MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. / Nucleic Acids Res 2007, 35:W375-W383. dx.doi.org/10.1093/nar/gkm216">CrossRef
    35. Arendall WB III, Tempel W, Richardson JS, Zhou W, Wang S, Davis IW, Liu Z-J, Rose JP, Carson WM, Luo M, Richardson DC, Wang B-C: A test of enhancing model accuracy in high-throughput crystallography. / J Struct Funct Genomics 2005, 6:1-1. dx.doi.org/10.1007/s10969-005-3138-4">CrossRef
    36. Headd JJ, Immormino RM, Keedy DA, Emsley P, Richardson DC, Richardson JS: AutoFix for backward-fit sidechains: Using MolProbity and real-space refinement to put misfits in their place. / J Struct Funct Genomics 2008. published on-line 11 November 2008 (open access)
    37. Richardson DC, Richardson JS: MAGE, PROBE, and Kinemages. In / Chapter 25.2.8 in IUCr's International Tables for Crystallography, Volume F: Crystallography of Biological Macromolecules. Edited by: Rossmann M, Arnold E. Dortrecht: Kluwer Academic Press; 2001.
    38. Schaeffer B, Goudeseune C: Syzygy: Native PC cluster VR. [du/szg/" class="a-plus-plus">http://www.isl.uiuc.edu/szg/] / Technical report from the Integrated Systems Laboratory Beckman Institute, U IL Urbana-Champaign; 2003.
    39. Taylor RM II, Hudson TC, Seeger A, Weber H, Juliano J, Helser AT: VRPN: A device-independent, network-transparent VR peripheral system. In / Proceedings of the ACM Symposium on Virtual Reality Software & Technology: 2008. Banff Centre, Canada. VRST; 2001.
    40. Mechdyne [dyne.com/integratedSolutions/software/products/trackd/trackd.htm" class="a-plus-plus">http://www.mechdyne.com/integratedSolutions/software/products/trackd/trackd.htm]
    41. Kilgard MJ: / The OpenGL utility toolkit (GLUT) programming interface: API version 3. Silicon Graphics Incorporated; 1996.
    42. Cornilescu G, Marquardt JL, Ottiger M, Bax A: Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. / J Amer Chem Soc 1998, 120:6836-837. dx.doi.org/10.1021/ja9812610">CrossRef
    43. Zheng D, Aramini JM, Montelione GT: Validation of helical tilt angles in the solution NMR structure of the Z domain of Staphylococcal protein A by combined analysis of residual dipolar coupling and NOE data. / Protein Sci 2004, 13:549-54. dx.doi.org/10.1110/ps.03351704">CrossRef
    44. Bomar MG, Pai MT, Tzeng SR, Li SS, Zhou P: Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase eta. / Embo Reports 2007, 8:247-51. dx.doi.org/10.1038/sj.embor.7400901">CrossRef
    45. Losonczi JA, Andrec M, Fischer MWF, Prestegard JH: Order matrix analysis of residual dipolar couplings using singular value decomposition. / J Magn Reson 1999,138(2):334-42. dx.doi.org/10.1006/jmre.1999.1754">CrossRef
    46. Yan AK, Langmead CJ, Donald BR: A probability-based similarity measure for Saupe alignment tensors with applications to residual dipolar couplings in NMR structural biology. / Internat J Robotics Res 2005, 24:165-82. dx.doi.org/10.1177/0278364905050351">CrossRef
    47. Wedemeyer WJ, Rohl CA, Scheraga HA: Exact solutions for chemical bond orientations from residual dipolar couplings. / J Biomolec NMR 2002,22(2):137-51. dx.doi.org/10.1023/A:1014206617752">CrossRef
    48. Saupe A: Recent results in the field of liquid crystals. / Angewandte Chemie 1968, 7:97112.
    49. Ban YA, Edelsbrunner H, Rudolph J: Interface surfaces for protein-protein complexes. / Proceedings of the 8th Annual International Conference on Research in Computational Molecular Biology 2004, 205-12.
    50. Huang YJ, Powers R, Montelione GT: Protein NMR recall, precision, and F-measure scores (RPF scores): Structure quality assessment measures based on information retrieval statistics. / J Am Chem Soc 2005,127(6):1665-674. dx.doi.org/10.1021/ja047109h">CrossRef
  • 作者单位:Jeremy N Block (1)
    David J Zielinski (2) (3)
    Vincent B Chen (1)
    Ian W Davis (1) (4)
    E Claire Vinson (3)
    Rachael Brady (2) (3)
    Jane S Richardson (1)
    David C Richardson (1)

    1. Biochemistry Department, Duke University Medical Center, 27710, Durham, NC, USA
    2. Visualization Technology Group, Pratt School of Engineering, Duke University, 27706, Durham, NC, USA
    3. Electrical and Computer Engineering Department, Pratt School of Engineering, Duke University, Durham, NC, 27706, USA
    4. Biochemistry Department, University of Washington, 98195, Seattle, WA, USA
文摘
Background In molecular applications, virtual reality (VR) and immersive virtual environments have generally been used and valued for the visual and interactive experience -to enhance intuition and communicate excitement -rather than as part of the actual research process. In contrast, this work develops a software infrastructure for research use and illustrates such use on a specific case. Methods The Syzygy open-source toolkit for VR software was used to write the KinImmerse program, which translates the molecular capabilities of the kinemage graphics format into software for display and manipulation in the DiVE (Duke immersive Virtual Environment) or other VR system. KinImmerse is supported by the flexible display construction and editing features in the KiNG kinemage viewer and it implements new forms of user interaction in the DiVE. Results In addition to molecular visualizations and navigation, KinImmerse provides a set of research tools for manipulation, identification, co-centering of multiple models, free-form 3D annotation, and output of results. The molecular research test case analyzes the local neighborhood around an individual atom within an ensemble of nuclear magnetic resonance (NMR) models, enabling immersive visual comparison of the local conformation with the local NMR experimental data, including target curves for residual dipolar couplings (RDCs). Conclusion The promise of KinImmerse for production-level molecular research in the DiVE is shown by the locally co-centered RDC visualization developed there, which gave new insights now being pursued in wider data analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700