Effect of temperature on high pressure cellulose compression
详细信息    查看全文
  • 作者:Guadalupe Vaca-Medina ; Bastien Jallabert ; David Viet ; Jerome Peydecastaing…
  • 关键词:Cellulose ; High pressure compression ; Mechanical testing ; Pressure–volume–temperature measurement ; Crystallinity index ; Water sorption isotherm ; Sintering
  • 刊名:Cellulose
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:20
  • 期:5
  • 页码:2311-2319
  • 全文大小:637KB
  • 参考文献:1. Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6(2):322-30
    2. Ek R, Wormald P, Ostelius J, Iversen T, Nystrom C (1995) Crystallinity index of microcrystalline cellulose particles compressed into tablets. Int J Pharm 125(2):257-64 CrossRef
    3. Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MP (2011) A critical review of all-cellulose composites. J Mater Sci 47(3):1171-186 CrossRef
    4. Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) “Green-composites from recycled cellulose and poly (lactic acid): physico-mechanical and morphological properties evaluation. J Mater Sci 40(16):4221-229 CrossRef
    5. Jallabert B, Vaca-Medina G, Calzalbou S, Rouilly A (2013) The pressure–volume–temperature relationship of cellulose. Cellulose. doi:10.1007/s10570-013-9986-3
    6. Kibbe AH (2000) Handbook of pharmaceutical excipients, 3rd edn. American Pharmaceutical Association, Washington
    7. Kumar V, Kothari SH (1999) Effect of compressional force on the crystallinity of directly compressible cellulose excipients. Int J Pharm 177(2):173-82 CrossRef
    8. Liangbin L, Rui H, Shiming H (2001) Sintering polymer nano-crystals at high pressure. J Mater Sci Lett 20(9):807-09 CrossRef
    9. Miki T, Sugimoto H, Kanayama K (2007) Thermoplastic behavior of wood powder compacted materials. J Mater Sci 42(18):7913-919 CrossRef
    10. Mohanty AK, Misra M, Drzal LT (eds) (2005) Natural fibers, biopolymers, and biocomposites. CRC Press CrossRef
    11. Nakai Y, Fukuoka E, Nakajima S, Hasegawa J (1977) Crystallinity and physical characteristics of microcrystalline cellulose. Chem Pharm Bull 25(1):96-01 CrossRef
    12. Nilsson H, Galland S, Larsson PT, Gamstedt EK, Nishino T, Berglund LA, Iversen T (2010) A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos Sci Technol 70(12):1704-712 CrossRef
    13. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683-687 CrossRef
    14. Parikh DV, Thibodeaux DP, Condon B (2007) X-ray crystallinity of bleached and crosslinked cottons. Text Res J 77(8):612-16 CrossRef
    15. Pintiaux T, Viet D, Vandenbossche V, Rigal L, Rouilly A (2013) High pressure compression-molding of α-cellulose and effects of operating conditions. Materials 6(6):2240-261 CrossRef
    16. Rampinelli G, Di Landro L, Fujii T (2010) Characterization of biomaterials based on microfibrillated cellulose with different modifications. J Reinf Plast Compos 29(12):1793-803 CrossRef
    17. Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65(8):1724-725 CrossRef
    18. Rouilly A, Rigal L, Vandenbossche V (2012) Process for manufacturing an eco-compatible solid material and eco-compatible solid material obtained. France Patent WO 2012069736
    19. Sato Y, Inohara K, Takishima S, Masuoka H, Imaizumi M, Yamamoto H, Takasugi M (2000) Pressure–volume–temperature behavior of polylactide, poly (butylene succinate), and poly (butylene succinate-co-adipate). Polym Eng Sci 40(12):2602-609 CrossRef
    20. Sebhatu T, Ahlneck C, Alderborn G (1997) The effect of moisture content on the compression and bond-formation properties of amorphous lactose particles. Int J Pharm 146(1):101-14 CrossRef
    21. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786-94 CrossRef
    22. Takagi H, Asano A (2008) Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green-composites. Compos Part A Appl Sci Manuf 39(4):685-89 CrossRef
    23. Zhang X, Wu X, Gao D, Xia K (2012) Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing. Carbohydr Polym 87(4):2470-476 CrossRef
  • 作者单位:Guadalupe Vaca-Medina (1) (2)
    Bastien Jallabert (1) (2)
    David Viet (3)
    Jerome Peydecastaing (1) (2)
    Antoine Rouilly (1) (2)

    1. LCA (Laboratoire de Chimie Agro Industrielle), INP-ENSIACET, Université de Toulouse, 31030, Toulouse, France
    2. INRA, UMR 1010 CAI, 31030, Toulouse, France
    3. The Green Factory, 27 rue Chanez, 75016, Paris, France
  • ISSN:1572-882X
文摘
The effect of temperature during cellulose compression has been studied using mechanical testing, particle size analysis, density and pressure–volume–temperature (PVT) measurements, crystallinity index, scanning electron microscope photographs and water sorption isotherms. Commercial cellulose powder samples with different crystallinity levels were compacted at high pressure (177?MPa) for 10?min at two different temperatures: 25 and 160?°C. Three point bending test results for compressed samples are discussed. When pressure was applied directly to powders at room temperature, the cellulose sample with the highest level of crystallinity showed an increase in its crystallinity index of about 5?%, while this was about 22?% for the sample with the lowest level. These increases were even higher at 160?°C attaining 8 and 33?% respectively. Using density measurements, a densification phase related to this crystallinization was observed, and the PVT diagrams from different cellulose samples showed that this was associated with high temperatures. Water sorption isotherms were made on cellulose samples before and after compression. They showed a diminution of cellulose sorption capacity after compression at 160?°C, revealing the effect of temperature on high-pressure cellulose compression, reducing specific surface area. Events of this nature suggest a sintering mechanism, when temperature is associated with high pressure during cellulose compression.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700