Droplet generation in co-flow microfluidic channels with vibration
详细信息    查看全文
  • 作者:Pingan Zhu ; Xin Tang ; Liqiu Wang
  • 关键词:Droplet on demand ; External vibration ; Synchronization ; Microfluidics
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:20
  • 期:3
  • 全文大小:4,722 KB
  • 参考文献:Abate AR, Weitz DA (2008) Single-layer membrane valves for elastomeric microfluidic devices. Appl Phys Lett 92:243509CrossRef
    Abate AR, Romanowsky MB, Agresti JJ, Weitz DA (2009) Valve-based flow focusing for drop formation. Appl Phys Lett 94:023503CrossRef
    Anna SL, Mayer HC (2006) Microscale tipstreaming in a microfluidic flow focusing device. Phys Fluids 18:121512CrossRef
    Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364CrossRef
    Augustin MA, Hemar Y (2009) Nano-and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38:902–912CrossRef
    Batchelor G (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeMATH
    Chan HF, Zhang Y, Ho Y-P, Chiu Y-L, Jung Y, Leong KW (2013) Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep. doi:10.​1038/​srep03462
    Chong ZZ, Tor SB, Loh NH, Wong TN, Gañán-Calvo AM, Tan SH, Nguyen N-T (2015) Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. Lab Chip 15:996–999CrossRef
    Christopher G, Anna S (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:R319–R336CrossRef
    Collins DJ, Neild A, deMello A, Liu A-Q, Ai Y (2015) The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip 15:3439–3459CrossRef
    deMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402CrossRef
    Ding Y, i Solvas XC, deMello A (2015) “V-junction”: a novel structure for high-speed generation of bespoke droplet flows. Analyst 140:414–421CrossRef
    Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218CrossRef
    Driessen T, Sleutel P, Dijksman F, Jeurissen R, Lohse D (2014) Control of jet breakup by a superposition of two Rayleigh–Plateau-unstable modes. J Fluid Mech 749:275–296CrossRef
    Erb RM, Obrist D, Chen PW, Studer J, Studart AR (2011) Predicting sizes of droplets made by microfluidic flow-induced dripping. Soft Matter 7:8757–8761CrossRef
    Evans HM, Surenjav E, Priest C, Herminghaus S, Seemann R, Pfohl T (2009) In situ formation, manipulation, and imaging of droplet-encapsulated fibrin networks. Lab Chip 9:1933–1941CrossRef
    Fan J, Zhang YX, Wang LQ (2010) Formation of nanoliter bubbles in microfluidic T-junctions. NANO 5:175–184CrossRef
    García F, González H, Castrejón-Pita J, Castrejón-Pita A (2014) The breakup length of harmonically stimulated capillary jets. Appl Phys Lett 105:094104CrossRef
    Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85:2649–2651CrossRef
    Guillot P, Colin A, Utada AS, Ajdari A (2007) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys Rev Lett 99:104502CrossRef
    Guillot P, Colin A, Ajdari A (2008) Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys Rev E 78:016307CrossRef
    Haber C (2006) Microfluidics in commercial applications; an industry perspective. Lab Chip 6:1118–1121CrossRef
    Hong J, Choi M, Edel JB, deMello AJ (2010) Passive self-synchronized two-droplet generation. Lab Chip 10:2702–2709CrossRef
    Khan IU, Stolch L, Serra CA, Anton N, Akasov R, Vandamme TF (2015) Microfluidic conceived pH sensitive core–shell particles for dual drug delivery. Int J Pharm 478:78–87CrossRef
    Khoshmanesh K, Almansouri A, Albloushi H, Yi P, Soffe R, Kalantar-zadeh K (2015) A multi-functional bubble-based microfluidic system. Sci Rep. doi:10.​1038/​srep09942
    Kim SH, Shim JW, Yang SM (2011) Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew Chem Int Ed 50:1171–1174CrossRef
    Kim JH, Jeon TY, Choi TM, Shim TS, Kim S-H, Yang S-M (2013) Droplet microfluidics for producing functional microparticles. Langmuir 30:1473–1488CrossRef
    Kobayashi I, Nakajima M, Nabetani H, Kikuchi Y, Shohno A, Satoh K (2001) Preparation of micron-scale monodisperse oil-in-water microspheres by microchannel emulsification. J Am Oil Chem Soc 78:797–802CrossRef
    Kong TT, Liu Z, Song Y, Wang LQ, Shum HC (2013) Engineering polymeric composite particles by emulsion-templating: thermodynamics versus kinetics. Soft Matter 9:9780–9784CrossRef
    Kong TT, Wang LQ, Wyss HM, Shum HC (2014) Capillary micromechanics for core–shell particles. Soft Matter 10:3271–3276CrossRef
    Lee W, Walker LM, Anna SL (2009) Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys Fluids 21:032103CrossRef
    Li J, Mittal N, Mak SY, Song Y, Shum HC (2015) Perturbation-induced droplets for manipulating droplet structure and configuration in microfluidics. J Micromech Microeng 25:084009CrossRef
    Meier G, Klöpper A, Grabitz G (1992) The influence of kinematic waves on jet break down. Exp Fluids 12:173–180CrossRef
    Moon B-U, Jones SG, Hwang DK, Tsai SSH (2015) Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures. Lab Chip 15:2437–2444CrossRef
    Nakano M, Komatsu J, Matsuura S-i, Takashima K, Katsura S, Mizuno A (2003) Single-molecule PCR using water-in-oil emulsion. J Biotechnol 102:117–124CrossRef
    Nguyen N-T et al (2007) Thermally mediated droplet formation in microchannels. Appl Phys Lett 91:084102CrossRef
    Patravale VB, Mandawgade SD (2008) Novel cosmetic delivery systems: an application update. Int J Cosmet Sci 30:19–33CrossRef
    Sauret A, Shum HC (2012) Forced generation of simple and double emulsions in all-aqueous systems. Appl Phys Lett 100:154106CrossRef
    Sauret A, Spandagos C, Shum HC (2012) Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension. Lab Chip 12:3380–3386CrossRef
    Schmid L, Franke T (2013) SAW-controlled drop size for flow focusing. Lab Chip 13:1691–1694CrossRef
    Schmid L, Franke T (2014) Acoustic modulation of droplet size in a T-junction. Appl Phys Lett 104:133501CrossRef
    Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356CrossRef
    Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411CrossRef
    Sugiura S, Nakajima M, Seki M (2002) Prediction of droplet diameter for microchannel emulsification. Langmuir 18:3854–3859CrossRef
    Tan SH, Maes F, Semin B, Vrignon J, Baret J-C (2014a) The microfluidic jukebox. Sci Rep. doi:10.​1038/​srep04787
    Tan SH, Semin B, Baret J-C (2014b) Microfluidic flow-focusing in ac electric fields. Lab Chip 14:1099–1106CrossRef
    Umbanhowar PB, Prasad V, Weitz DA (2000) Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16:347–351CrossRef
    Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99:094502CrossRef
    Wang LQ, Zhang YX, Cheng L (2009) Magic microfluidic T-junctions: valving and bubbling. Chaos Soliton Fractals 39:1530–1537CrossRef
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRef
    Zhang YX, Wang LQ (2011) Nanoliter-droplet breakup in confined T-shaped junctions. Curr Nanosci 7:471–479CrossRef
    Zhang YX, Jiang W, Wang LQ (2010) Microfluidic synthesis of copper nanofluids. Microfluid Nanofluid 9:727–735CrossRef
    Zhao C-X (2013) Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv Drug Deliv Rev 65:1420–1446CrossRef
    Zhou H, Yao S (2014) A facile on-demand droplet microfluidic system for lab-on-a-chip applications. Microfluid Nanofluid 16:667–675CrossRef
    Zhu PA, Kong TT, Kang ZX, Tian XW, Wang LQ (2015) Tip-multi
    eaking in capillary microfluidic devices. Sci Rep. doi:10.​1038/​srep11102
    Ziemecka I, van Steijn V, Koper GJM, Rosso M, Brizard AM, van Esch JH, Kreutzer MT (2011) Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems. Lab Chip 11:620–624CrossRef
  • 作者单位:Pingan Zhu (1) (2)
    Xin Tang (1) (2)
    Liqiu Wang (1) (2)

    1. Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
    2. HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, 311300, Zhejiang, China
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
We quantitatively characterize the perturbed droplet generation in co-flow microfluidics with mechanical vibration by estimating the fluctuations in the flow rate of inner fluid. We show the variation of generation frequency and uniformity of droplets as the frequency and amplitude of vibration. Synchronized droplet generation occurs in certain range of the vibration frequency that is predicted by our model. Besides, we scale the droplet size by incorporating the effects of vibration, inner and outer flows. The vibration is found to be capable of promoting the dripping, suppressing the jetting and even shifting the jetting into the dripping when the jet length is sufficiently short. The delayed dripping–jetting transition is characterized in a phase diagram by taking vibration into consideration. Our results unveil the mechanism of mechanically perturbed droplet generation and provide valuable guidelines for practical applications of vibration-enhanced droplet generation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700